

SAFETY WARNINGS / PRECAUTIONS

KEEP THIS MANUAL – DO NOT LOSE

THIS MANUAL IS PART OF THE **SKOOT** SYSTEM AND MUST BE RETAINED FOR THE LIFE OF THE PRODUCT. PASS ON TO SUBSEQUENT OWNERS. Ensure any amendments are incorporated with this document.

WARNING! The SKOOT is designed for a specific use. Using the SKOOT outside of its intended use is dangerous. Failure to comply with the warnings, instructions, and specifications in this manual could result in **SEVERE INJURY** or **DEATH**. Read and understand this manual before using.

WARNING! FALLING OBJECT HAZARD. The area below a crawler must be kept clear at all times. A clearly marked **NO ENTRY ZONE** must be cordoned off directly below the area of crawler operation.

(see Preparation for Safe Use on page 35 for additional details)

WARNING! Do **NOT** operate or place crawler on a surface higher than 2 m (6 ft) without a proper tether held taut at all times.

(see Tether Requirements and Attachment on page 36 for additional details)

WARNING! ELECTRICAL CORDS CAN BE HAZARDOUS. Misuse can result in FIRE or DEATH by ELECTRICAL SHOCK. Inspect thoroughly before each use. Do NOT use if damaged. Do NOT use when wet. Keep away from water. Do NOT drive, drag or place objects over cord.

WARNING! Do **NOT** operate scanner in an explosive environment. Do **NOT** operate scanner in the presence of volatile substances.

WARNING! MAGNETIC MATERIAL. The wheels of the crawler produce an extremely strong magnetic field which may cause failure or permanent damage to items such as watches, memory devices, CRT monitors, medical devices or other electronics.

Tools, magnets and metal objects can cut, pinch or entrap hands and fingers. **HANDLE WITH CARE**.

People with pacemakers or ICD's must stay at least 25 cm (10 in) away.

WARNING! MAGNETIC MATERIAL. The installation/removal mat (see "Installation/Removal Mat" on page 29) contains magnetic material.

People with pacemakers or ICD's must stay at least 10 cm (4 in) away.

WARNING! LASER RADIATION. The battery powered optical guide contains a Class 1M laser. Do not view directly with optical instruments.

WARNING! If this product is to be used with any Child Products listed in *(Chapter 2.3)*, be sure to read and comply with the warnings, instructions, and specifications in the Child Product's User Manual(s).

WARNING! DO NOT DISASSEMBLE. No user-serviceable parts. Disassembling any of the components in this product, beyond the instructions in this user manual, could void the regulatory certifications and/or effect the safety of the product.

CAUTION! DO NOT operate the SKOOT crawler on an inspection surface which is electrically connected to a component that is being welded.

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

EMERGENCY STOP. This symbol indicates emergency stop button.

The WEEE symbol indicates that the product must not be disposed of as unsorted municipal waste, but should be collected separately.

(see Disposal on page 135 for additional details).

TABLE OF CONTENTS

	Identif	ication	
	1.1.	Product Brand	3
	12	Manufacturer	3
	1.2.	Compliance Declarations	ס
	1.0.	121 /CED Existence Compliance (Consider)	S
		1.3.1. ISED Emissions Compliance (Canada).	ວ ວ
		1.3.2. FCC Suppliers Declaration of Conformity (United States)	33 ۱
		I.3.3. European Union CE Declarations	4
C	Produc	ct Specifications5	
2	2.1.	Base SKOOT System	5
		2.1.1. Intended Use	5
		2.1.1.1 Operating Limits	6
		2.1.1.2 Operating Environment	7
		2.11.3 User	7
		2.1.2. Unintended Use	8
		2.1.3. Dimensions and Weight	8
		2.1.4. Power Requirements	10
		2.1.5. Environmental Sealing	10
		2.1.6. Performance Specifications	10
		2.1.7. Encoder Interface Specifications	11
	2.2.	Compatible Components	12
		2.2.1. Low Profile Probe Holder Frame	12
		2.2.1.1 Intended Use	12
		2.2.1.2 Operating Limits	12
		2.2.2. Vertical Probe Holder Frame	12
		2.2.2.1 Intended Use	12
		2.2.2.2 Operating Limits	
		2.2.3. Pivoting Probe Holder Frame	13
		2.2.3.1 Operating Limits	
		2.2.4. Frame Bar	
		2.2.4.1 Intended Use	
		2.2.4.2 Operating Limits	13
		2.2.5. Slip Joint Probe Holder	14
		Z.Z.b. Vertical Probe Holder	14

		2.2.7. Heavy Duty Vertical Probe Holder	14
		2.2.8. Corrosion Thickness Probe Holder	14
		2.2.9. HydroFORM Cart with Wheels	14
		2.2.10. Preamp Bracket	15
		2.2.10.1 Intended Use	15
		2.2.10.2 Operating Limits	15
		2.2.11. Battery Powered Optical Guide	15
		2.2.11.1 Intended Use	15
		2.2.11.2 Operating Environment	15
		2.2.11.3 Power Requirements	
		2.2.11.4 Environmental Sealing	
		2.2.12. Medium Temperature Add-On Kit	
		2.2.12.1 Intended Use	
		2.2.12.2 Operating Limits	16
		2.2.15. Elicouel Audplei	10
	23	Child Products	10
	2.0.	2.21 Materized Couplent Dump	17
		2.3.1. Motorized Couplant Fump	
		2.3.2. Million Raster Ann	
~	Definit	ions	
3	31	Definition of Symbols	18
	3.1	Definitions of Terms	
	3.2. 3.3	Safoty Symbols	10 10
	Э.Э. Э.Л	Safety Symbols	19
	5.4.	Salety Signal Words	
	System	n components 20	
4	/1	Component Identification	20
	4.1.		20
		4.1.1. Base System	
		4.1.2. Compatible Components	21
	1 2	4.1.3. Child Products	23 24
	4.2.		24
		4.2.1. Included loois	
	1 2	4.2.2. Optional tools	24 25
	4.3.		
		4.3.1. Crawler	
		4.3.1.1 Emergency Off Button	
		4.3.2. Power Controller	
		4.3.2.1 AC/DC Power Supply	27

	4.3.3. Handheld Controller	28
	4.3.4. Auxiliary Cable	29
	4.3.5. Encoder Cable	29
	4.3.6. Installation/Removal Mat	29
	4.3.7. Lifting Sling	
	4.3.8. Irrigation Kit	
	4.3.9. Cable Management	
	4.3.10. Tools	
	4.3.11. Cases	
4.4.	Compatible Components	31
	4.4.1. Low Profile Probe Holder Frame	31
	4.4.2. Vertical Probe Holder Frame	
	4.4.3. Pivoting Probe Holder Frame	31
	4.4.4. Frame Bar	31
	4.4.5. Slip Joint Probe Holder	31
	4.4.6. Vertical Probe Holder	
	4.4.7. Heavy Duty Vertical Probe Holder	
	4.4.8. Corrosion Thickness Probe Holder	
	4.4.9. HydroFORM Cart	
	4.4.10. Preamp Bracket	
	4.4.11. Battery Powered Optical Guide	
	4.4.12. Automated Crawler Medium Temperature Add-On Kit	
4 5	4.4.13. Encoder Adapter	
4.5.	Child Products	
	4.5.1. Motorized Couplant Pump	
	4.5.2. Motorized Raster Arm	
	4.5.3. Optical Guide	34
Prepar	ration for Use	
5.1.	Preparation for Transportation	
5.2.	Preparation for Safe Use	
	5.21 No Entry Fall Zone	35
	5.2.2. Tether Requirements and Attachment	36
	5.2.3. Lifting Sling Setup	37
5.3.	Preparation of Inspection Surface	
5.4.	System Connectivity	
5.5.	Configurations	40
	5.5.1 Crawler with Multiple Probe Holders	40
	5.5.11 Vertical Probe Holder Frame	40
	5.5.1.2 Low Profile Probe Holder Frame	
	5.5.1.3 Pivoting Probe Holder Frame	
	-	

EG	5.5.1.4 Pivoting Probe Holder Frame	
5.0.		40
	5.6.1. Swivel Mount	48
	5.6.2. Umblilical	49 FO
	5.6.3. Hallule	
	5.6.4. Emergency Off Button	
	5.6.5. Capie Retainer	טו בי
5.7.	Backpack	52
	5.7.1. Mounting a Backpack	
	5.7.2. Using the backpack	
5.8.	Probe Holders	
	5.8.1. Heavy Duty Vertical Probe Holder	55
	5.8.1.1 Probe Holder Setup	
	5.8.1.2 Probe Holder Vertical Adjustment	
	5.8.1.3 Probe Holder Left/Right Conversion	
	5.8.1.4 Probe Holder 90° Adjustment	
	5.8.2. Vertical Probe Holder	60
	5.8.2.1 Probe Holder Setup	60
	5.8.3. Probe Holder Vertical Adjustment	61
	5.8.4. Probe Holder Transverse Adjustment	62
	5.8.5. Probe Holder Longitudinal Adjustment	63
	5.8.6. Probe Holder Left/Right Conversion	64
5.9.	Slip Joint Probe Holder	66
	5.9.1. Probe Holder Setup	66
	5.9.2. Probe Holder Adjustment	68
	5.9.3. Probe Holder Force Adjustment	68
	5.9.4. Slip Joint Probe Holder Left/Right Conversion	70
5.10.	Probe Holder Frames	72
	5.10.1. Low Profile Probe Holder Frame - Flat or Circumferential Only	72
	5.10.2. Vertical Probe Holder Frame - Flat or Circumferential Only	76
	5.10.3. Pivoting Probe Holder Frame	80
	5.10.3.1 Mounting a Pivoting Probe Holder Frame	81
	5.10.4. Pivoting Probe Holder Frame Setup - Longitudinal Scanning	82
	5.10.4.1 Longitudinal Scanning	82
	5.10.4.2 Circumferential Scanning	83
	5.10.4.3 Pivoting Probe Holder Frame - Flange Scanning	84
	5.10.5. Optical Guide Pivot Mount	
5.11.	Accessories	
	5.11.1. Battery Powered Optical Guide	88
	5.11.2. Cable Management	89
	5.11.2.1 Mounting the Cable Management	

		5.11.2.2 Cable Management Setup	
		5.11.2.3 Clamp Setup	
		5.11.3. Preamp Bracket	
•	Operat	tion	
6	61	System Startup	92
	6.2	Placement of Crawler on Inspection Surface	94
	0.2.	6.21 Scanner Installation/Removal Mat Lise	95
	6.3.	Operation	
		6.31. Handheld Controller Lavout	97
		6.3.1.1 Touchscreen	
		6.3.1.2 Click Wheel	
		6.3.1.3 Joysticks	
		6.3.2. Mode Select Screen	
		6.3.3. Jog Mode	
		6.3.4. Latched Jog Mode	101
		6.3.5. System Utilities Screen	102
		6.3.5.1 User Settings Screen	
		6.3.5.2 Diagnostics Screens	
		6.3.5.2.1. Detected Modules	105
		6.3.5.2.3. System 2	
		6.3.5.2.4. System 3	106
		6.3.5.2.5. Skoot-L, Raster	
		6.3.5.3 Touch Calibration Screen	
		6.3.5.4 Joystick Calibration Screen	
		6.3.5.5 Draw	110
		0.3.0. Figh internal temperature Screen	
7	Mainte	enance	
1	7.1.	Safety Precautions Before Maintenance	111
	7.2.	Cleaning	111
	7.3.	Maintenance Schedule	112
	Troubl	leshooting 113	
8	01	Startup Issues	11つ
	0.1.		
		8.1.1. Joystick Off Center	
	00	8.1.2. Checking Network	II3 11 /
	0.2.		
		0.2.1. Stall Devices	
		8.2.3 System Parameters	
		0.2.0. Oyoteni i didinetero	

		8.2.4. Device Address	116
	8.3.	Additional Issues	117
	8.4.	Retrieval of a Stranded Crawler	
	<u> </u>		
Q	Service	e and Repair	
9	9.1.	Technical Support	
		_	
10	Spare	Parts	
10	10.1.	SKOOT Crawler	
	10.2.	SKOOT Kit Components	
		10.2.1. Encoder Connector Type	
		10.2.2. Power Cord Type	
	10.3.	Probe Holder Frame	
	10.4.	Low Profile Probe Holder Frame	
	10.5.	Pivoting Probe Holder Frame	
	10.6.	Slip Joint Probe Holder Parts	
	10.7.	Vertical Probe Holder Parts	
	10.8.	Heavy Duty Vertical Probe Holder	
	10.9.	Corrosion Thickness Probe Holder	
	10.10	. Probe Holder Components	
		10.10.1. Arm Style	
		10.10.2. Yoke Style	
		10.10.3. Swing Arm Style	
		10.10.4. Heavy Duty Yoke Style	
		10.10.5. Pivot Button Style	
		10.10.6. Probe Holder Receptacle and Wear Plate	
	10.11.	Variable Components	
		10.11.1. Frame Bar	131
		10.11.2. Cable Management Sleeving	
	10.12	. Accessories	132
		10.12.1. Automated Crawler Medium Temperature Add-On Kit	
		10.12.2. Preamp Bracket	133
		10.12.3. Battery Powered Optical Guide	133
	10.13.	Cases	134
	Dispos	al 125	
11	Cishos		

JIREH

PAGE 2 of 137

IDENTIFICATION

1.1. Product Brand

The **SKOOT** is a remotely operated vehicle with magnetic wheels suitable for driving on ferrous material. Its primary purpose is to move inspection equipment over areas of structures, such as tanks or pipes, made from ferrous materials in industrial environments.

1.2. Manufacturer

Distributor:

Manufacturer:

Jireh Industries Ltd.

53158 Range Road 224 Ardrossan, Alberta, Canada T8E 2K4

Phone: 780.922.4534

jireh.com

1.3. Compliance Declarations

1.3.1. ISED Emissions Compliance (Canada)

CAN ICES-003(A) / NMB-003(A)

This Class A digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

1.3.2. FCC Suppliers Declaration of Conformity (United States)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

RESPONSIBLE PARTY NAME:	Jireh Industries
ADDRESS:	2955 S Sam Houston Pkwy E Suite 300 Houston, Texas United States 77047
TELEPHONE:	832-564-0626

1.3.3. European Union CE Declarations

Jireh Industries hereby declares that the **SKOOT** product complies with the essential requirements and other relevant provisions of the following European Union directives:

2014/30/EU	EMC Directive
2014/35/EU	Low Voltage Directive
2012/19/EU	Directive on Waste Electrical and Electronic Equipment
2011/65/EU	Directive on Restriction of Hazardous Substances (RoHS).

CE

PRODUCT SPECIFICATIONS

2.1. Base SKOOT System

This section outlines the product specifications of the base system. When the base system is used together with compatible components *(Chapter 2.2)* or child products *(Chapter 2.3)*, the product specifications of the base system may be superseded. See *(see "Compatible Components" on page 12)* and *(see "Child Products" on page 17)*

2.1.1. Intended Use

The **SKOOT**'s primary purpose is to perform inspections of ferrous assets such as pipes, vessels, or storage tanks by moving an inspection tool over a ferrous surface. It is intended for industrial use only.

2.1.1.1 Operating Limits

Category	Parameter	Specification
Inspection Surface	Maximum coating thickness:	
	Up-side-down orientation	Bare metal only
	Vertical orientation	0.5 mm <i>(0.020 in)</i>
	Horizontal, Right-side-up orientation	1 mm <i>(0.040 in)</i>
	Condition	Clean, free of excess rust, scale, debris (i.e. <i>dirt, sand, etc.</i>), ice, frost
	Minimum thickness	3 mm (0.120 in)
	Minimum ID, internal circumferential driving	686 mm <i>(27 in)</i>
	Minimum OD, external Circumferential driving	64 mm <i>(2.5 in)</i>
	Minimum OD, longitudinal driving	762 mm <i>(30 in)</i>
	Maximum surface temperature	50°C <i>(122°F)</i>

Category	Parameter	Specification
Scanner	Maximum umbilical length	30 m (100 ft)
	Maximum payload	9 kg (20 lb)
	(performance may vary with surface condition)	(Umbilical and attachments are considered payload)
	Attachments	Restricted to those listed in compatible components or child products
	Orientation while driving at height >2 m (6 ft) on vertical surface	Umbilical strain relief to point downwards, or at worst, horizontal. It is not to point upwards
	Required radial clearance (stick handle and backpack removed, front handle lowered, circumferential driving)	102 mm <i>(4 in)</i> on outer diameters <200 mm <i>(8 in)</i>
		112 mm (4.4 in) on outer diameters >200 mm (8 in)
Backpack	Maximum weight of mounted object	1.36 kg <i>(3 lb)</i>
	Condition of mounted object	Attached to crawler with lanyard or cables strong enough to prevent object from falling
		Smooth edges to prevent cutting of strap

2.1.1.2 Operating Environment

The SKOOT is for use in dry industrial environments having ambient temperatures shown below. It is **NOT** intended for use in explosive environments

Category	Parameter	Specification
Environment	Minimum ambient temperature	-20°C (-4°F)
	Maximum ambient temperature	50°C <i>(122°F)</i>

2.1.1.3 User

The SKOOT is intended to be used by persons who have read and understand the user manual. The intended user is to be a person without limitations in the physical abilities of the upper and lower limbs, sight, hearing, or anyone with a pacemaker or Implantable Cardioverter Defibrillator (ICD). For operating at a height greater than 2 m *(6 ft)*, the SKOOT is intended to be used by two people:

- **1.** a person who is trained in rigging and fall protection and is able to effectively apply the same safety principles to the crawler, and
- 2. a person who is trained to operate the SKOOT

2.1.2. Unintended Use

The SKOOT is NOT intended for:

- use outside of its intended use
- unattended use
- ▶ lifting / lowering objects or people (i.e. using the SKOOT as a crane / elevator)
- driving into / over obstructions, excluding standard weld caps
- installation on a surface on which welding is actively occurring

In addition to the above points, for operating at a height greater than 2 m (6 ft), the crawler is NOT intended for:

- operation without a properly cordoned off no entry fall zone and/or proper tether system
- operating up-side-down
- operating while oriented such that the umbilical strain relief points upward (front for the SKOOT is lower than the umbilical connection).

2.1.3. Dimensions and Weight

Crawler height:	14.9 cm	5.9 in
Crawler width:	20.8 cm	8.2 in
Crawler depth:	21.8 cm	8.6 in
Crawler height (handle down):	11.2 cm	4.4 in
Crawler weight: *	7.3 kg	16 lb

* Configuration excluding case, attachments, umbilical, manipulation handle, power controller and handheld controller.

Fig. 2 - Width

2.1.4. Power Requirements

WARNING! A reliable power source must be used to power the crawler. Connections must be secured to prevent accidental disconnection. Power failure may cause the crawler to freewheel down when operating in a vertical orientation. Portable generator usage is not recommended unless accompanied by the use of an uninterruptible power controller.

WARNING! Proper grounding of the power controller is important for safe operation. When a generator is used to supply power to the system (*not recommended*), the generator must be properly grounded (*refer to generator manual*).

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

Power Requirements: 100-240VAC, 50/60Hz, 1.4 Amps

2.1.5. Environmental Sealing

Dust-tight, watertight (not submersible).

2.1.6. Performance Specifications

Category	Parameter	Specification
Crawler	Maximum speed	14.2 cm/sec (5.6 in/sec)
	Encoder resolution,	1354 counts/mm (34394 counts/in)
	drive motor	

2.1.7. Encoder Interface Specifications

Fig. 3 - Jireh Industries pin out configuration

2.2. Compatible Components

The components listed in this section integrate with the base system to perform certain tasks. Their use may modify the product specifications *(i.e. intended use, power requirements, etc.)* from those of the base system. The specifications listed here supersede those of the base system. If no specifications are listed here, the specifications of the base system remain effective.

2.2.1. Low Profile Probe Holder Frame CXG004-

2.2.1.1 Intended Use

The Low Profile Probe Holder Frame is intended to be mounted in the SKOOT's swivel mount to provide mounting of multiple probe holders. Its use limits the SKOOT's operation to inspection surfaces that are either flat or driven on in the circumferential direction.

2.2.1.2 Operating Limits

Category	Parameter	Specification
Inspection Surface	Minimum OD, longitudinal driving	Not recommended
Maximum number of probe holders	Slip joint probe holders	4

2.2.2. Vertical Probe Holder Frame CXG007-

2.2.2.1 Intended Use

The Vertical Probe Holder Frame is intended to be mounted in the SKOOT's swivel mount to provide mounting of multiple probe holders. Its use limits the SKOOT's operation to inspection surfaces that are either flat or driven on in the circumferential direction.

2.2.2.2 Operating Limits

Category	Parameter	Specification
Inspection Surface	Minimum OD, Iongitudinal driving	Not recommended
Maximum number of probe holders	Vertical probe holders	6

2.2.3. Pivoting Probe Holder Frame CXG013-

The Pivoting Probe Holder Frame is intended to be mounted in the SKOOT's swivel mount to provide mounting of multiple probe holders. Its use limits the SKOOT's operation to the operating limits shown below.

2.2.3.1 Operating Limits

Category	Parameter	Specification
Maximum number of probe holders	Vertical probe holders	6

2.2.4. Frame Bar BG0038-

2.2.4.1 Intended Use

The Frame Bar is intended to be mounted in the SKOOT's swivel mount to provide mounting of multiple probe holders. Its use limits the SKOOT's operation to inspection surfaces that are either flat or driven on in the circumferential direction.

2.2.4.2 Operating Limits

Category	Parameter	Specification
Inspection Surface	Minimum OD, longitudinal driving	Not recommended
Maximum number of probe holders	Slip joint probe holders	2
	Vertical probe holders	2
	Heavy duty vertical probe holders	2

2.2.5. Slip Joint Probe Holder PHA012-

The Slip Joint Probe Holder is intended to provide a probe holding solution for probes and wedges with pivot button holes. It is useful for situations requiring lower profile. It is mounted in the dovetail groove of any probe holder frame or frame bar.

2.2.6. Vertical Probe Holder PHA015-

The Vertical Probe Holder is intended to provide a probe holding solution for probes and wedges with pivot button holes. It is mounted in the dovetail groove of any probe holder frame or frame bar.

2.2.7. Heavy Duty Vertical Probe Holder PHS043-

The Heavy Duty Vertical Probe Holder is intended to provide a probe holding solution for larger, heavier probes. It is mounted in the dovetail groove of any probe holder frame or frame bar.

2.2.8. Corrosion Thickness Probe Holder PHS046- / PHS056-

The Corrosion Thickness Probe Holder is intended to provide a probe holding solution for specific probes or wedges that do not have pivot button holes. It is mounted in the dovetail groove of any probe holder frame or frame bar.

2.2.9. HydroFORM Cart with Wheels PHS044

The HydroFORM Cart with Wheels is intended to provide a solution for holding the Olympus HydroFORM probe. It is used in conjunction with the heavy duty vertical probe holder.

2.2.10. Preamp Bracket CES029-

2.2.10.1 Intended Use

The Preamp Bracket is intended to mount objects such as preamps, splitters, etc. on a rack or dovetail bar that is mounted to the SKOOT crawler. The mounted object is attached to the SKOOT with a lanyard or probe cables strong enough to prevent the object from falling, should the straps or screws that hold it to the bracket fail. Also, if the object is mounted with straps, it is to have smooth edges so as not to cut the straps.

2.2.10.2 Operating Limits

Category	Parameter	Specification
Preamp Bracket	Maximum weight of mounted object	1.36 kg <i>(3 lb)</i>
Scanner	Required radial clearance (handles removed circumferential driving)	Dependent on object mounted on Preamp Bracket

2.2.11. Battery Powered Optical Guide CXS080

2.2.11.1 Intended Use

The Battery Powered Optical Guide is intended to provide a point of reference useful for guiding the SKOOT along a given path *(i.e. a weld cap)*. It is intended to be mounted in the dovetail groove of any probe holder frame or frame bar.

2.2.11.2 Operating Environment

Category	Parameter	Specification
Scanner	Required radial clearance	Dependent on mounted orientation of Optical Guide

2.2.11.3 Power Requirements

Power requirements: 1 AA battery

2.2.11.4 Environmental Sealing

IP64

2.2.12. Medium Temperature Add-On Kit CXG031-

2.2.12.1 Intended Use

The Medium Temperature Add-On Kit allows the SKOOT to operate on inspection surfaces that are hotter.

2.2.12.2 Operating Limits

Category	Parameter	Specification
Inspection surface	Maximum surface temperature	150°C <i>(302°F)</i>

2.2.13. Encoder Adapter UMA010-

2.2.13.1 Intended Use

The Adapter Cable adapts a scanner's existing encoder cable connector to a different instrument's encoder input.

2.3. Child Products

The products listed in this section integrate with the base system to perform certain tasks. Their use may modify the product specifications (*i.e. intended use, power requirements, etc.*) from those of the base system. These products have a user manual of their own, and shall be referred to for their product specifications as well as how their use modifies the product specifications of the base system.

2.3.1. Motorized Couplant Pump CMA015

The Motorized Couplant Pump is a powered pumping unit used to supply couplant fluid to scanning equipment.

2.3.2. Motorized Raster Arm CWG002-

Available in various lengths, the Motorized Raster Arm can carry many different probes for various types of corrosion scans. The Motorized Raster Arm is intended to be mounted in the SKOOT's swivel mount.

2.3.3. Optical Guide CXG035

The Optical Guide mount's to any dovetail attached to a motorized crawler. The Optical Guide provides a green colour, point of reference for guiding scanners along a given path *(i.e. a weld)*.

DEFINITIONS

3.1. Definition of Symbols

Instructions to 'look here' or to 'see this part'.

Denotes movement. Instructing user to carry out action in a specified direction.

Indicates alignment axis.

Alerts user that view has changed to a reverse angle.

3.2. Definitions of Terms

Circumferential	Direction of scan travel is around the circumference of the pipe/tube (<i>Fig. 4</i>).
Longitudinal	Direction of scan travel is lengthwise of the pipe/tube <i>(Fig. 5)</i> .

3.3. Safety Symbols

The following safety symbols might appear on the product and in this document. Read and understand their meaning below:

	General warning symbol	This symbol is used to alert the user to potential hazards. All safety messages that follow this symbol shall be obeyed to avoid possible ham or material damage.
4	Shock hazard caution symbol	This symbol is used to alert the user to potential electric shock hazards. All safety messages that follow this symbol shall be obeyed to avoid possible harm.
	Laser warning symbol	This symbol is used to alert the user to potential laser hazards. All safety messages that follow this symbol shall be obeyed to avoid possible harm or material damage.

3.4. Safety Signal Words

The following safety signal words might appear in this document. Read and understand their meaning below:

DANGER!	The DANGER signal word indicates an imminently hazardous situation. It calls attention to a procedure, practice, or the like that if not correctly performed or adhered to will result in death or serious personal injury. Do not proceed beyond a DANGER signal word until the indicated conditions are fully understood and met.
WARNING!	The WARNING signal word indicates a potentially hazardous situation. It calls attention to a procedure, practice, or the like that if not correctly performed or adhered to could result in death or serious personal injury. Do not proceed beyond a WARNING signal word until the indicated conditions are fully understood and met.
CAUTION!	The CAUTION signal word indicates a potentially hazardous situation. It calls attention to a procedure, practice, or the like that if not correctly performed or adhered to may result in minor or moderate personal injury, material damage, particularly to the product, destruction of part or all of the product, or loss of data. Do not proceed beyond a CAUTION signal word until the indicated conditions are fully understood and met.

SYSTEM COMPONENTS

4.1. Component Identification

JIREH

Fig. 24 - Motorized pump / umbilical case CMA016

4.1.2. Compatible Components

Fig. 25 - Low profile probe holder frame CXG004-

Fig. 26 - Vertical probe holder CXG007-

Fig. 27 - Pivoting probe holder frame CXG013-

Fig. 30 - Vertical probe holder PHA015-

Fig. 34 - HydroFORM cart

PHS044

Fig. 32 - Corrosion thickness probe holder

PHS046-

Fig. 33 - Corrosion thickness probe holder PHS056-

Fig. 36 - Battery powered optical guide CXS080

Fig. 37 - Automated crawler medium temperature add-on kit CXG031-

UMA010-

Fig. 35 - Pre-amp bracket CES029-

Fig. 38 - Encoder adapter

4.1.3. Child Products

Fig. 40 - Motorized raster arm CWG002-

Fig. 41 - Optical Guide CXG035

4.2. Tools

4.2.1. Included Tools

Fig. 44 - 3 mm flat driver

4.2.2. Optional tools

Some specialized adjustments require tools that are not included with this kit.

4.3. Base System Components

4.3.1. Crawler

The crawler includes the motor encoder, umbilical connections and accessory mounting point.

4.3.1.1 Emergency Off Button

The red button located on the top left of the crawler provides an emergency off button to the entire system. When pressed, all power to the **SKOOT** system will disengage.

NOTE: Terminating system power may cause the crawler to freewheel down when operating in a vertical orientation.

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

WARNING! There are no user serviceable components inside the power controller. Dangerous voltages can be present inside the case. Do **NOT** open. Return to manufacturer for repair.

Fig. 51 - Power controller

The **SKOOT** power controller converts power from a 100-240 VAC, 50/60Hz, 1.4A power source to 36VDC, 2.65A. A start/stop safety circuit and physical **ON** and **OFF** push-buttons are integrated into the supply.

Fig. 52 - Power controller

1	CTRL socket	Connection for the auxiliary cable
2	ENC socket	Connection for the encoder cable
3	Power connection	Connect plug from a properly grounded source. Use IEC320 cord approved for AC supply
4	Power button	Activate system power by pressing (and releasing) the green button.
5	Stop button	The red stop button latches down when pressed, this stop button shuts down the system. Twist the stop button clockwise to return to the released position. This must be done before power can be activated.
6	Status LCD	Displays the power controller's status.
7	Umbilical connection	Connection for the umbilical.

In the event of a break in the stop circuit (the stop circuit runs through the power controller cable, umbilical and the crawler's emergency stop button) power will shut off.

NOTE: Before use, always inspect the power cable and plug for damage. The power controller should not be used if visible damage is present. Use of damaged components may be a safety hazard.

4.3.2.1 AC/DC Power Supply

The power connection 3 of the power controller is used to connect the power controller to a suitable 90-270VAC, 45-65Hz grounded power source capable of supplying a minimum of 5 amps.

The safety of the power controller relies on the provision of a proper ground connection.

In environments with moisture present, a GFCI (Ground Fault Circuit Interrupter) must be used to ensure operator safety.

NOTE: Some generators or DC-AC inverters may introduce significant levels of noise to the system. This may degrade overall system performance or reduce the system life expectancy. Use of generators or DC-AC inverters is not recommended and are used at the operator's risk.
4.3.3. Handheld Controller

Fig. 53 - Handheld controller

The handheld controller is used to manipulate a scanner installed on an inspection surface. User settings and scan information are edited using the handheld controller. The handheld controller is connected to the power controller with the auxiliary cable.

The handheld controller contains the complete system program and must be connected for the system to operate. When a software upgrade is necessary, the handheld controller is the only component required.

The handheld controller is not watertight and is not intended to be used in extremely wet environments. The handheld controller utilizes a resistive touch screen, care should be taken to not use sharp or gritty objects on the screen as the touch membrane can scratch. If the screen is damaged, all programmed functions can still be accessed using the click wheel.

NOTE: Do **NOT** connect the handheld controller while system activated.

4.3.4. Auxiliary Cable

The auxiliary cable connects the handheld controller to the power controller. 36VDC and network signals are used in the cable.

Both auxiliary cable connectors are identical and interchangeable. The cable may be plugged into the 4-pin receptacle on the power controller or the crawler's umbilical.

Fig. 54 - Auxiliary cable

NOTE: Inspect the cable and connectors for damage before use. When any damage is evident, the cable must **NOT** be utilized. Use of a damaged cable may be a safety hazard and could also put other system components at risk.

4.3.5. Encoder Cable

The encoder cable connects the **SKOOT** system to the user's instrument. This cable allows transmission of two-axis position signals from the **SKOOT** to the instrument. The encoder cable also provides 5VDC from the user's instrument to the encoder isolation circuitry.

Various encoder styles are available for various instruments.

Fig. 55 - Encoder cable

NOTE: Inspect the cable and connectors for damage before use. When damage is evident, the cable must **NOT** be used.

4.3.6. Installation/Removal Mat

WARNING! MAGNETIC MATERIAL. The installation/removal mat contains magnetic material. Those with pacemakers or ICD's must stay at least 10 cm (*4 in*) away.

The installation/removal mat is used for installation and removal of motorized magneticwheeled scanners from the inspection surface. A motorized scanner can drive on/off the mat, while the integrated magnets in the mat hold it firmly in place on the inspection surface. The scanner installation mat can be used on both round and flat surfaces.

Fig. 56 - Installation/removal mat

4.3.7. Lifting Sling

The lifting sling attaches to the crawler to provide an attachment point for tethers. When operating a **SKOOT** at a height greater than 2 m *(6 ft)*, the crawler **MUST** be tethered with a proper tether system to prevent the crawler from falling *(see "Preparation for Safe Use" on page 35)*.

4.3.8. Irrigation Kit

The irrigation kit provides a variety of hoses, fittings, connectors and splitters commonly used during non-destructive inspection.

Fig. 59 - Cable management

4.3.9. Cable Management

The cable management provides a means of protecting and organizing cables, tubes and hoses.

4.3.10. Tools

Several tools are included for various scanner and accessory adjustment. (see "Tools" on page 24 for additional details)

4.3.11. Cases

Depending on the configuration selected at the time of purchase. This will determine the types and amount of cases included with the system.

4.4. Compatible Components

4.4.1. Low Profile Probe Holder Frame

The low profile probe holder frame carries up to four probes during limited access, circumferential weld inspection. Removal of the **SKOOT** handles and the use of the low profile probe holder frame allows inspection when radial clearance is limited.

4.4.2. Vertical Probe Holder Frame

The vertical probe holder frame carries up to six probes during circumferential weld inspection. Available in a myriad of configurations and lengths, the vertical probe holder frame attaches to the front of the **SKOOT** crawler.

4.4.3. Pivoting Probe Holder Frame

The pivoting probe holder frame carries up to six probes during longitudinal weld inspection. Available in a myriad of configurations and lengths, the pivoting probe holder frame may also be used for circumferential weld inspection.

4.4.4. Frame Bar

Frame bars use dovetail grooves into which probe holders and accessories may be attached. Available in various lengths.

4.4.5. Slip Joint Probe Holder

The slip joint probe holder is generally used during limited access inspection. The low profile design requires minimal radial clearance. The slip joint probe holder is designed to carry many different types of probes and wedges, it is available with various types of yokes, arms and pivot buttons.

Fig. 60 - Low profile probe holder frame

Fig. 61 - Vertical probe holder frame

Fig. 62 - Pivoting probe holder frame

Fig. 63 - Frame bar

Fig. 64 - Slip joint probe holder

4.4.6. Vertical Probe Holder

The vertical probe holder is designed to carry many different types of probes and wedges. Available with various types of yokes, arms and pivot buttons. The vertical probe holder features several different adjustment options for each unique probe/wedge setup.

4.4.7. Heavy Duty Vertical Probe Holder

The heavy duty vertical probe holder is designed to carry larger probes. Available with various arm, yoke and pivot buttons, the heavy duty vertical probe holder exerts more down force on a large footprint probe/wedge.

4.4.8. Corrosion Thickness Probe Holder

The corrosion thickness probe holder carries various probes for the purpose of corrosion inspection and is available with either a flat or curved wear plate.

4.4.9. HydroFORM Cart

The HydroFORM Cart carries an Olympus HydroFORM[™] probe. The HydroFORM cart is designed to be used in conjunction with the heavy duty vertical probe holder.

4.4.10. Preamp Bracket

The preamp mounts to any dovetail groove. It is compatible with more standard preamps.

Fig. 65 - Vertical probe holder

Fig. 66 - Heavy duty vertical probe holder

Fig. 67 - Corrosion thickness probe holder

Fig. 68 - HydroFORM cart

Fig. 69 - Preamp bracket

4.4.11. Battery Powered Optical Guide

The battery powered optical guide provides a red colour point of reference useful for guiding scanners along a given path *(i.e. a weld)*.

4.4.12. Automated Crawler Medium Temperature Add-On Kit

The automated crawler medium temperature add-on kit enables a **SKOOT** crawler to operate on an inspection surface with a temperature up to $150^{\circ}C$ (302°F).

Fig. 71 - Automated crawler medium temperature add-on kit

4.4.13. Encoder Adapter

The encoder adapter changes the scanner's built in encoder connector style.

Fig. 72 - Encoder adapter

4.5. Child Products

4.5.1. Motorized Couplant Pump

The motorized couplant pump is a powered pumping unit used for supplying couplant fluid to the scanning surface.

4.5.2. Motorized Raster Arm

The motorized raster arm is available in various lengths and offers programmable speed and travel settings.

The optical guide mounts to any dovetail and provides a green colour point of reference useful for guiding scanners along a given path (i.e. a weld).

Fig. 74 - Motorized raster arm

Fig. 75 - Optical guide

PREPARATION FOR USE

5.1. Preparation for Transportation

CAUTION! PINCH / CRUSH HAZARD. Be careful when passing the SKOOT crawler through narrow ferrous (magnetic) openings, such as manholes. The magnetic drive wheels can cause bodily harm if allowed to slam onto the walls of the opening.

- 5.2. Preparation for Safe Use
 - 5.2.1. No Entry Fall Zone

The area below a crawler must be kept clear at all times. A clearly marked **NO ENTRY FALL ZONE** must be cordoned off directly below the area of crawler operation, according to the dimensions shown in (*Fig. 76*).

Example: If inspecting a tank that is 6 m (20 ft) tall, the No Entry Fall Zone radii must be no smaller than 3 m (10 ft) from the area below the area of crawler operation.

5.2.2. Tether Requirements and Attachment

WARNING! FALLING OBJECT HAZARD. Failure to comply with the warnings, instructions, and specifications in this manual could result in **SEVERE INJURY** or **DEATH**.

WARNING! Do **NOT** operate or place crawler on a surface higher than 2 m (6 ft) without a proper tether held taut at all times.

WARNING! Hook the tether hook to the provided lifting sling **BEFORE** placing the crawler on the surface to be inspected (*e.g. tank*). **IMPORTANT**: Tether hook must have a safety latch to prevent accidental disconnection.

When used at a height greater than 2 m (6 ft), the **SKOOT** crawler MUST be tethered with a proper tether system to prevent the crawler from falling. The tether system must:

- be capable of safely suspending the crawler from above in case the crawler detaches from the inspection surface;
- have sufficient capacity to catch and hold a 70 kg (150 lb) load;
- include a mechanism (i.e. self retracting inertia reel fall arrester) or person to continuously take up slack in the tether as the crawler moves;
- include a lifting hook with a safety latch to prevent accidental disconnection. The hook must be free of sharp edges that may cut or abrade the provided lifting sling.

Before placing the crawler on the surface to be inspected (e.g. tank), attach the provided lifting sling to the **SKOOT** and then hook the tether hook to the lifting sling.

CAUTION! The overhead attachment point for the tether must be located as close as possible to a location directly above the crawler to minimize dangerous swinging of the crawler should it detach from the inspection surface.

5.2.3. Lifting Sling Setup

Secure the lifting sling to the **SKOOT** as illustrated here:

Fig. 77 - Attach the lifting sling with a choker hold

Fig. 78 - Attach the lifting sling with a choker hold

- 1. Wrap the supplied lifting sling around the handle of the **SKOOT** using a choker hold knot *(Fig. 77) and (Fig. 78).*
- 2. Ensure the lifting sling is attached correctly to the **SKOOT** and inspect the lifting sling for any damage prior to use.

5.3. Preparation of Inspection Surface

WARNING! FALLING OBJECT HAZARD.

The inspection surface must adhere to the conditions outlined in sections *"Intended Use" on page 5* and *"Operating Environment" on page 7* of this manual.

- Remove build-up of scale, and other debris (*i.e. dirt, ice*) from surface on which the crawler is to drive. Excessive build-up will cause the wheels to lose magnetic attraction which may lead to wheel slippage or crawler detachment.
- Ensure that no obstructions (other than standard butt welds) or voids are in the drive path. Obstructions and voids could cause the crawler to fall if driven into or over.
- Ensure that there are no patches of non-ferrous material in the drive path of the crawler. If the crawler drives over a non-ferrous patch, it will lose magnetic attraction and will cause the crawler to fall.

5.4. System Connectivity

BOM ID	Description
1	Crawler
2	Umbilical
3a	Auxiliary cable (alternate)
3b	Auxiliary cable
4	Power controller
5	User instrument
6	Handheld controller
7	Encoder cable

To configure the **SKOOT** system for scanning, follow these steps:

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

- 1. Connect the **4** power controller to the **1** crawler using the **2** umbilical.
- 2. Connect the 6 handheld controller to the 4 power controller using the 3b auxiliary cable.

NOTE: The 6 handheld controller may also be connected directly to the 1 crawler using the 3a auxiliary cable.

- 3. Connect the **5** user's instrument to the **4** power controller using the **7** encoder cable.
- 4. (see "Configurations" on page 40) to setup a particular component.

5.5. Configurations

- 5.5.1. Crawler with Multiple Probe Holders
 - 5.5.1.1 Vertical Probe Holder Frame

Fig. 80 - Probe holder frame configuration

BOM ID	Description
1	Vertical probe holder frame
2	Crawler

To configure the **SKOOT** system for scanning using a vertical probe holder frame, follow these steps (see "Vertical Probe Holder Frame - Flat or Circumferential Only" on page 76):

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

1. Attach a configured 1 vertical probe holder frame to the 2 crawler.

Fig. 81 - Low profile probe holder frame configuration

BOM ID	Description
1	Low profile probe holder frame
2	Crawler

To configure the **SKOOT** system for scanning using a low profile probe holder frame, follow these steps (see *"Low Profile Probe Holder Frame - Flat or Circumferential Only" on page 72*):

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

1. Attach a configured 1 low profile probe holder frame to the 2 crawler.

BOM ID	Description
1	Pivoting probe holder frame
2	Crawler

To configure the **SKOOT** system for scanning using a pivoting probe holder frame, follow these steps (see *"Pivoting Probe Holder Frame" on page 80*):

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or

LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

1. Attach a configured 1 pivoting probe holder frame to the 2 crawler.

Fig. 83 - Pivoting probe holder frame configured for flange scanning

BOM ID	Description
1	Flange probe holder frame
2	Crawler

To configure the **SKOOT** system for scanning using a pivoting probe holder frame configured for flange scanning, follow these steps (see *"Pivoting Probe Holder Frame - Flange Scanning"* on page 84):

CAUTION! DO NOT DISCONNECT UNDER LOAD. Shut off power before connection or disconnecting. Permanent damage to electronics could occur.

1. Attach a configured 1 flange probe holder frame to the 2 crawler.

5.6. Crawler

5.6.1. Swivel Mount

Located at the front of the crawler, the swivel mount is used to connect scanning accessories such as a raster arm module, probe frame system or corrosion thickness probe holder.

Rotate the two black wing knobs (*Fig. 84*) to loosen the dovetail jaws. Slide the accessory's frame bar along the dovetail jaws. Rotate the two black wing knobs to clamp the frame system/raster arm in place.

Alternatively, accessories can also be mounted straight to the swivel mount. Rotate the black wing knobs aligning the dovetail jaws with the mount's grooves *(Fig. 86)*. Press the frame bar or accessory to the swivel mount *(Fig. 87)* and tighten the black wing knobs.

The front mount utilizes two levers (*Fig. 85*) to lock the front mount at the desired angle.

The etched line (*Fig. 88*) near the base of the swivel mount can be used to align the front swivel mount to a horizontal position.

NOTE: The front mount must be horizontal when using the pivoting probe holder frame to scan longitudinally on piping.

5.6.2. Umbilical

To mount the umbilical to the crawler, follow these steps:

- 1. Align the pins of the umbilical to the connector at the rear of the SKOOT *(Fig. 89).*
- 2. Twist the umbilical's sleeve clockwise locking the umbilical in place (Fig. 90).

3. Ensure the umbilical strain relief never points downwards during operation *(Fig. 92).*

5.6.3. Handle

The handle can be lowered to achieve low profile scanning.

Fig. 93 - Unscrew handle lock screw

1. To lower the handle, use the supplied 3 mm driver to loosen the handle lock screws on either side of the handle (*Fig. 93*).

- 2. Pivot the handle as required (Fig. 94).
- 3. Tighten the handle lock screws when complete (Fig. 95).

5.6.4. Emergency Off Button

The red button located on the top left of the crawler provides an emergency off button to the entire system. When pressed, all power to the **SKOOT** system will disengage.

To restore system power, it is necessary to press the green power button located on the power controller (see "Power Controller" on page 26).

Fig. 96 - Emergency off

NOTE: Terminating system power may cause the crawler to freewheel down when operating in a vertical orientation.

5.6.5. Cable Retainer

Located at the on the side of the crawler, the cable retainer offers a means of cable management for cables, hoses and tubes. Gently apply pressure to the grooves of the cable retainer and lift (*Fig. 97*). Route cables, hoses or tubes through the retainer and then press the cable retainer down (*Fig. 98*).

Fig. 98 - Place cables and hoses then close retainer

5.6.6. Manipulation Handle

Fig. 99 - Manipulation handle

The manipulation handle (*Fig. 99*) provides a means of orienting the scanner direction. The handle can be used to set initial scanner direction as well as occasional orientation correction. The manipulation handle is not intended as a tool for constant adjustment during a scan operation.

The handle may be removed when additional scanner clearance is required.

NOTE: Do not use the manipulation handle to remove or install a crawler from a scan surface without the installation/removal mat in place.

5.7. Backpack

The **SKOOT** backpack provides a mounting point for scanning peripherals. The flexible strap securely holds any preamp, splitters or scan accessories to the **SKOOT** crawler.

5.7.1. Mounting a Backpack

To mount the backpack, follow these steps.

- 1. Angle the backpack (Fig. 100) towards the notches on found on the SKOOT (located near the base of the handle).
- 2. Place the front of the backpack into the notches fount near the base of the handle (*Fig. 101*).
- 3. Lower the backpack to the SKOOT and tighten the thumb screws to secure the backpack (*Fig. 102*).

Fig. 102 - Tighten thumb screws

5.7.2. Using the backpack

The flexible strap of the backpack stretches to hold various scanning accessories to crawler.

Fig. 103 - Press lever down and pull to release

1. Press the strap's lever down (*Fig. 103-1*) and then pull (*Fig. 103-2*) to release the flexible strap.

Fig. 104 - Press lever into backpack to lock in place

2. Place the scanning accessory on the backpack. Pull the strap lever across the accessory and fit the lever into place on the backpack (*Fig. 104*).

5.8. Probe Holders

5.8.1. Heavy Duty Vertical Probe Holder

Fig. 106 - Mount probe holder to carrier

Fig. 107 - Vertical adjustment

- 1. Loosen the probe holder adjustment knob (*Fig. 106*) and mount the heavy duty vertical probe holder's dovetail jaw to the carrier.
- **2.** The vertical adjustment knob (*Fig. 107*) allows the heavy duty vertical probe holder's height adjustment. This adjustment also controls the probe holders spring tension.

Fig. 108 - Remove outer arm

Fig. 109 - Adjust inner arm

- **3.** Loosen the probe holder adjustment knob and remove the outer probe holder arm *(Fig. 108)*.
- 4. Loosen the arm clamp screw (Fig. 109).
- 5. Place the wedge on the pivot button of the inner probe holder arm (*Fig. 108*).

- 6. Align the middle of the wedge with the centre of the yoke (Fig. 110).
- 7. Tighten both the probe holder adjustment knob and the arm clamp screw (*Fig. 111*) while ensuring the wedge remains centred with the yoke.

JIREH

5.8.1.2 Probe Holder Vertical Adjustment

1. Gently lift the heavy duty vertical probe holder and simultaneously pull the latch (*Fig. 112*). This action will unlock the probe holder. Slowly lower the probe holder towards the scan surface (*Fig. 113*).

5.8.1.3 Probe Holder Left/Right Conversion

- 1. Using the supplied 3 mm driver, unscrew the yoke (Fig. 114).
- 2. Position the yoke and arms to the opposite side of the probe holder *(Fig. 115).*

Fig. 116 - Remove probe holder arms

Fig. 117 - Reverse position around yoke

- **3.** Loosen the arm clamp screw and the probe holder arm adjustment knob allowing removal of the probe holder arms (*Fig. 116*).
- 4. Position the removed arms to the opposite sides of the yoke (Fig. 117).

- Position the pivot buttons to the inside of the probe holder arms (*Fig. 118*).
- 6. Place the probe holder arms on the yoke and tighten the arm clamp screw and probe holder adjustment knob (*Fig. 119*).
- 7. Screw the yoke to the probe holder *(Fig. 120)*.
 - TIP: When using a standard yoke length, position the yoke in the threaded hole closest to the frame bar. When using a long yoke length, position the yoke in the threaded hole furthest from the frame bar.

Fig. 120 - Screw into threaded hole

5.8.1.4 Probe Holder 90° Adjustment

- 1. Remove the yoke using the supplied 3 mm hex driver (Fig. 114).
- 2. Orient the yoke to the front of the probe holder and screw the yoke into the threaded hole provided (*Fig. 121*).

Fig. 121 - 90° probe holder positioning

5.8.2. Vertical Probe Holder

- A Latch
- B Probe Holder Adjustment Knob
- C Vertical Adjustment Knob
- D Pivot Buttons
- E Probe Holder Arms
- F Yoke
- G Probe Holder Arm Adjustment Knob
- H Transverse Adjustment Screw
- I Frame Bar

Fig. 122 - Vertical probe holder

Fig. 123 - Adjust on frame bar

Fig. 124 - Vertical adjustment

Fig. 125 - Place buttons

- 1. The probe holder adjustment knob allows the probe holder to be attached to a frame bar, as well as horizontal positioning on a frame bar *(Fig. 123).*
- 2. The vertical adjustment knob allows the vertical probe holder height adjustment (*Fig. 124*).
- **3.** Position the pivot buttons where necessary. When a narrow scanning footprint is required, use the pivot button holes closet to the yoke *(Fig. 125).*

TIP: Probe pivoting may be impeded when closer to the yoke.

- 2. Position the wedge on the inner probe holder arm (Fig. 126).
 - **TIP:** The probe holder yoke can accommodate many different probe and wedge sizes of varying widths. It is best to centre the wedge with the yoke's pivot axis. This can reduce wedge 'rocking' when scanning. Position the inner probe holder arm accordingly (Fig. 126) using the supplied 3 mm hex driver (Fig. 42).
- **3.** Loosen the probe holder arm adjustment knob (*Fig. 127*) and slide the probe holder arm along the yoke pinching the wedge in place.
- 4. Tighten the probe holder arm adjustment knob (Fig. 128).

5.8.3. Probe Holder Vertical Adjustment

To adjust the probe holder vertically, follow these steps:

Fig. 129 - Latch probe holder

Fig. 130 - Lower toward scan surface

- 1. Ensure the probe holder is in the latched, upper position. Lift the probe holder until the latch is fully exposed and snaps out to lock (*Fig. 129*).
- 2. Loosen the vertical adjustment knob and slide the probe holder down until the wedge is approximately 6 mm (1/4 in) above inspection surface.
- 3. Tighten the vertical adjustment knob (Fig. 130).

Fig. 131 - Press latch button

Fig. 132 - Lower toward scan surface

4. Lift the yoke slightly and press the latch button (*Fig. 131*), then slowly lower towards scanning surface to apply spring pressure to the wedge (*Fig. 132*).

TIP: If less spring force is desired, refer to step 2 and place the wedge approximately 20 mm (¾ in) above inspection surface.

5.8.4. Probe Holder Transverse Adjustment

To adjust the probe holder's transverse angle, follow these steps:

- 1. Ensure the probe holder is in latched, upper position (Fig. 129).
- 2. Using the supplied 3 mm hex driver loosen the transverse adjustment screw (*Fig. 133*) and rotate the yoke about the vertical shaft achieving the desired angle.
- 3. Tighten the transverse adjustment screw (Fig. 134).

To return the transverse adjustment to neutral (90°). The probe holder must be in the latched, upper position (*Fig. 129*). Rotate the yoke until the stop post contacts the base of the probe holder (*Fig. 135*). Then tighten the transverse adjustment screw.

5.8.5. Probe Holder Longitudinal Adjustment

To adjust the probe holder's vertical angle for longitudinal scanning, follow these steps:

- 1. Ensure the probe holder is in latched, upper position (Fig. 129).
- **2.** Using the supplied 3 mm hex driver (*Fig. 42*), loosen the longitudinal adjustment screw (*Fig. 136*).
- **3.** Rotate the main body of the probe holder until it is at the desired angle *(Fig. 137).*
- 4. Tighten the longitudinal adjustment screw (Fig. 137).

To return the longitudinal adjustment to neutral (90°). Line up the longitudinal adjustment indicator markers *(Fig. 138)*.
5.8.6. Probe Holder Left/Right Conversion

To reverse the probe holder, follow these steps:

NOTE: To perform this operation the 1.5 mm hex wrench (Fig. 45) is required.Image: Image: I

- 1. Ensure the probe holder is in latched, upper position (Fig. 129).
- 2. Using the supplied 3 mm hex driver (*Fig. 42*), unscrew the yoke pivot screw and remove yoke (*Fig. 139*).
- **3.** Loosen the probe holder arm adjustment knob and the arm clamp screw. Slide the probe holder arms off the yoke (*Fig. 140*).

- 4. Flip the yoke 180° and reverse the probe holder arms (Fig. 141).
- 5. Place the pivot buttons on the inside of the probe holder arms (*Fig. 142*) using a 3/8 in wrench (*Fig. 43*).

6. Mount the yoke to the opposite side of the base using the supplied 3 mm hex driver (Fig. 143).

TIP: Keep the yoke level with the base as to ensure no conflicts with the plunger/set screw attached to the yoke.

7. Locate the recessed M3 screw on the bottom of the probe holder. Unscrew the stop post using a 1.5 mm hex wrench (Fig. 45) until it has cleared all obstructions. Do not remove stop post (Fig. 144).

Fig. 145 - Raise opposite 90° stop post

Fig. 146 - Reversed probe holder

Raise the stop post on the opposite side until the side of the post clearly 8. contacts the 90° stop point on the probe holder's base (Fig. 145).

5.9.1. Probe Holder Setup

To mount a UT wedge in the probe holder, follow these steps:

Fig. 148 - Attach to frame bar

Fig. 149 - Adjust on frame bar

- 1. Rotate the probe holder adjustment knob and attach probe holder to a frame bar (*Fig. 148*).
- 2. Use the probe holder adjustment knob to position the probe holder along the frame bar (*Fig. 149*).

3. Use swing arm knob to position the swing arm (Fig. 150).

TIP: The swing arm is typically used to adjust TOFD center to center distance relative to the phased array probes on a four probe configuration.

4. Using the supplied 3/8 in wrench, place the pivot buttons (*Fig. 151*) farthest from the yoke for maximum wedge clearance.

TIP: If narrow scanning footprint is required, use pivot button holes closest to the yoke. Wedge pivoting may be impeded when closer to the yoke.

Fig. 152 - Adjust probe holder arms

Fig. 153 - Place wedge

- **5.** Loosen the probe holder arm adjustment knob (*Fig. 152*) and remove outer probe holder arm from yoke.
- 6. Adjust inner probe holder arm as required to best centre the probe on the yoke's pivot axis (*Fig. 152*).

TIP: The probe holder yoke can accommodate many different probe and wedge sizes of varying widths. It is best to centre the wedge with the yoke's pivot axis to reduce wedge tipping when scanning. Position the inner probe holder arm accordingly with the centre of the yoke (Fig. 152).

- 7. Position the wedge on the inner probe holder arm (*Fig. 153*).
- 8. Slide outer probe holder arm along the yoke pinching the wedge in place.
- 9. Tighten probe holder arm adjustment knob (*Fig. 154*).

5.9.2. Probe Holder Adjustment

To adjust the probe holder, follow these steps:

- 1. Ensure probe holder is in latched, upper position (*Fig. 155*). If the probe holder is already latched, it will only move within the slip joint adjustment range and have no spring tension.
- 2. Push the probe holder yoke down toward inspection surface until the wedge is approximately 6 mm (1/4 in) above the inspection surface (Fig. 156).

Fig. 157 - Lift and press latch button

Fig. 158 - Spring loaded scan position

- **3.** Lift probe slightly and press latch button (*Fig. 157*) to apply spring pressure to the wedge.
- 4. Gently lower probe holder and wedge to the scanning surface (Fig. 158).

5.9.3. Probe Holder Force Adjustment

It is possible to adjust the tension of the probe holder spring.

NOTE: To perform this operation the 2 mm hex wrench (Fig. 46) and 3 mm hex wrench (Fig. 42) is required.				
Light	1 kg	2 lb	When configured correctly, these settings exert the indicated spring	
Medium	2 kg	4 lb	force on the Probe.	
Heavy	3 kg	6 lb		

To adjust the probe holder's force, follow these steps:

NOTE: Do not perform this operation on scanning surface.

- 1. Ensure the probe holder is in the upright latched position (Fig. 155).
- 2. Lift probe holder slightly and press the latch button (Fig. 159) to release the probe holder the full 45° degrees.
- 3. Insert the short arm of a 3 mm hex wrench into the 3 mm slot (Fig. 160).

- 4. Place the 2 mm hex wrench into the force adjustment screw (Fig. 161).
- 5. Lightly press the long arm of the 3 mm hex wrench down. Using the 2 mm hex wrench, loosen the force adjustment screw but do not remove it (Fig. 162).
- 6. Gently apply pressure on the long leg of the 3 mm hex wrench until the force adjustment marker lines up with the desired spring tension. While keeping the markers in line, tighten the force adjustment screw.

5.9.4. Slip Joint Probe Holder Left/Right Conversion

To reverse the probe holder, follow these steps:

- 1. Unscrew the yoke from the swing arm (Fig. 164).
- 2. Loosen the probe holder arm adjustment knob and arm clamp screw. Slide the arms from the yoke (*Fig. 165*).

Fig. 166 - Flip yoke and reverse arms

Fig. 167 - Attach arms and move buttons

- 3. Flip the yoke 180° and reverse the probe holder arms (Fig. 166).
- **4.** Place the pivot buttons on the inside of the probe holder arms (*Fig. 167*) using a 3/8 in wrench (*Fig. 43*). Slide the arms onto the yoke and tighten the probe holder arm adjustment knob and the arm clamp screw.

- **5.** Loosen the swing arm knob and slide the swing arm to the opposite end of the probe holder bracket *(Fig. 168)* or preferred position. Tighten swing arm knob.
- 6. Using the 3 mm hex driver, screw the yoke pivot screw into the opposite side of the probe holder swing arm *(Fig. 169)*. Ensure the yoke is level to avoid issues with the plunger/set screw.

Fig. 170 - Reversed probe holder

5.10. Probe Holder Frames

5.10.1. Low Profile Probe Holder Frame - Flat or Circumferential Only

WARNING! FALLING OBJECT HAZARD. It is imperative that the steps below be followed to properly set the height of the probe holder frame. If the height of the probe holder frame is set too low, the crawler may fall and **SEVERE INJURY** or **DEATH** could result.

The low profile frame adds weld scanning capability to the **SKOOT** motorized scanner. This frame can utilize (4) slip joint probe holders (2 Phased Array and 2 TOFD, typically). The low profile design of this frame allows for scanning on diameters where radial clearance is limited.

Fig. 171 - Low profile probe holder frame

1. Attach the wedges to the probe holders that are to be used (see Probe Holder Setup on page 60 for additional details).

Fig. 172 - Position primary and secondary probe holders

2. Affix the probe holders (with attached wedges) to the low profile probe holder frame. On the frame bar, place the secondary probe holders at the front (*Fig. 172-2*) and the primary probe holders at the rear (*Fig. 172-1*).

TIP: Due to their larger size, scan results are generally improved when pulling or dragging phased array wedges.

3. Mount the low profile probe holder frame to the crawler (see Cable Retainer on page 51 for additional details). When mounting the low profile frame, ensure the attachment knobs (*Fig. 172*) are at the front (non crawler side).

Fig. 173 - Align swivel mount with scan surface

4. Release the two swivel mount levers (*Fig. 173*) to position the swivel mount parallel to the scan surface (*Fig. 174*). When alignment with scan surface is achieved, lock the crawler swivel mount levers.

5. Loosen the rear rotational adjustment knob to lower the front frame bar of the low profile frame towards the inspection surface (*Fig. 174*).

Fig. 175 - Align probe holder tangent with scan surface

6. Loosen the front rotational adjustment knob (*Fig. 175*) to align the frame bar parallel with the scan surface (*Fig. 176*).

Fig. 176 - Low profile probe holder frame

5.10.2. Vertical Probe Holder Frame - Flat or Circumferential Only

WARNING! FALLING OBJECT HAZARD. It is imperative that the steps below be followed to properly set the height of the probe holder frame. If the height of the probe holder frame is set too low, the crawler may fall and SEVERE INJURY or DEATH could result.

The vertical probe holder frame adds weld scanning capability to the **SKOOT** motorized scanner. This frame uses (4) vertical probe holders. Additional frame components allow up to six probes to be used *(contact Jireh Industries Ltd. on page 3).*

- 1. Attach the wedges to the probe holders that will be used (see Probe Holder
 - Setup on page 60 for additional details).

Fig. 178 - Position primary and secondary probe holders

2. Affix the probe holders *(with attached wedges)* to the probe holder frame. Place the secondary probe holder at the front of the frame *(Fig. 178-1)* and place the primary probe holders at the rear of the frame bar *(Fig. 178-2)*.

TIP: Due to their larger size, scan results are generally improved when pulling or dragging phased array wedges.

3. Mount the probe holder frame to the crawler (see Cable Retainer on page 51 for additional details). When mounting the probe holder frame, ensure the attachment knobs (*Fig. 179*) are at the front (non crawler side).

Fig. 179 - Align swivel mount with scan surface

4. Release the two swivel mount levers (*Fig. 179*) to position the swivel mount parallel to the scan surface (*Fig. 180*). When alignment with scan surface is achieved, lock the crawler swivel mount levers.

Fig. 180 - Set rear rotational adjustment knob

5. Loosen the rear rotational adjustment knob to lower the weld scan frame towards the inspection surface (*Fig. 180*).

Fig. 181 - Set front rotational adjustment knob

6. Loosen the front rotational adjustment knob (*Fig. 181*) to align the TOFD probe holders parallel with the scan surface (*Fig. 182*).

Fig. 182 - Align probes with the scan surface tangent

5.10.3. Pivoting Probe Holder Frame

The pivoting probe holder frame utilizes vertical probe holders. The SKOOT can guide as many as six probes in the longitudinal direction.

NOTE: A minimum OD of 762 mm (30 in) is required for longitudinal scanning.

Fig. 183 - Pivoting Probe Holder Frame

5.10.3.1 Mounting a Pivoting Probe Holder Frame

- 1. If attached, use the 3 mm hex driver to remove the probe holder pivot mount from the pivoting probe holder frame.
- 2. Attach the wedges that are to be used with the probe holders (see Probe Holder Setup on page 60 for additional details).

Fig. 185 - Connect frame to crawler's swivel mount

3. Affix the probe holders *(with attached wedges)* to the probe holder frame. Place the secondary probe holders at the front of the frame *(Fig. 185-1)* while placing the primary probe holders at the rear of the frame system *(Fig. 185-2)*.

TIP: Phased array wedges are designed to be pulled along a scan surface.

4. Mount the pivoting probe holder frame to the crawler *(see Crawler on page 48 for additional details).*

5.10.4. Pivoting Probe Holder Frame Setup - Longitudinal Scanning

5.10.4.1 Longitudinal Scanning

To prepare the pivoting probe holder frame for longitudinal scanning, follow these steps:

NOTE: The swivel mount must be in a horizontal position during longitudinal scanning (see "Crawler" on page 48).

1. Loosen the pivot wing knobs at the centre of the frame system (*Fig. 186*). Lower the left side of the frame system to align with the tangent of the scan surface. Tighten the pivot wing knobs.

Fig. 187 - Tighten pivot wing knobs

2. Lower the vertical probe holders (see "Probe Holder Vertical Adjustment" on page 61).

Fig. 188 - Correct probe holder longitudinal adjustment

3. Ensure probe holder arms are parallel to the scan surface (see "Probe Holder Longitudinal Adjustment" on page 63).

5.10.4.2 Circumferential Scanning

(see Vertical Probe Holder Frame - Flat or Circumferential Only on page 76 for additional details)

5.10.4.3 Pivoting Probe Holder Frame - Flange Scanning

NOTE: The optical guide pivot mount is not compatible with the following configuration.

The pivoting probe holder frame may be configured to allow scanning of flanges and the like. The following steps explain setup of this configuration:

Fig. 189 - Configure assembly and mount to SKOOT

1. Disassemble the pivoting probe holder frame to achieve the setup shown (*Fig. 189*). Ensure proper placement of the frame bar with attached mounting point in relation to the **SKOOT**.

TIP: When the scanning surface is circumferential, only one frame bar with two probes can be used.

Fig. 190 - Lift frame bar to avoid interference

- 2. Loosen the pivot wing knob and raise the frame bar to an angle greater than the surface to be scanned (*Fig. 190*). Tighten the pivot wing knob and place crawler on scan surface (see "*Placement of Crawler on Inspection Surface*" on page 94)
- **3.** Release the front swivel mount adjustment levers to align the swivel mount parallel to the scan surface (*Fig. 191*).

Fig. 191 - Align swivel mount with scan surface

Fig. 192 - Align frame bar with flange scan surface

4. Loosen the pivot wing knob and align the frame bar parallel with the scan surface *(Fig. 192)*.

5.10.5. Optical Guide Pivot Mount

Fig. 193 - Correct probe holder longitudinal adjustment

An optional mounting point for any optical guide is available.

- (see "Battery Powered Optical Guide" on page 88)
- ▶ (see "Optical Guide" user manual)

To install the pivot mount, see these following instructions:

- 1. Remove the dovetail bar pivot from one of the sets of frame bars (*Fig. 193-1*). The choice of which dovetail bar pivot to remove is at the user's discretion.
- 2. Attach the optical guide pivot mount to the frame bars (*Fig. 193-2*), tighten the dovetail knobs and the dovetail screws. Ensure a flush alignment of the pivot mount and the frame bars to achieve proper centering of the optical guide pivot mount.
- 3. Mount an optical guide see the appropriate instructions listed above.

5.11. Accessories

5.11.1. Battery Powered Optical Guide

Fig. 195 - Mount on frame bar

The battery powered optical guide provides a reference point useful for a aligning the **SKOOT** too a given path *(i.e. a weld)*. The battery powered optical guide may be installed and setup as follows:

- **1.** Loosen the optical guide knob.
- 2. Mount the optical guide to the frame bar, tighten the optical guide knob *(Fig. 195).*
- **3.** Adjust the optical guide's friction pivot aiming the beam at the inspection surface (*Fig. 196*).
- Loosen the optical guide knob to adjust the side-to-side position as required. Retighten the optical guide knob.

Fig. 196 - Aim guide

Fig. 197 - Perpendicular mount

NOTE: The battery powered optical guide requires 1 AA battery for operation.

5.11.2. Cable Management

The cable management is offered in a variety of lengths and provides a means of bundling and protecting cables and hoses that connect to the scanner.

5.11.2.1 Mounting the Cable Management

To attach cable management with threaded mount, follow these steps:

Fig. 198 - Align with umbilical

Fig. 199 - Tighten wing knob

- **1.** Align the cable management clamp with the appropriate mounting position on the user umbilical breakout (*Fig. 198*).
- 2. Tighten the cable management clamp wing knob (Fig. 199).

Fig. 200 - Insert cables and hoses

Fig. 201 - Zip to close

- 1. Open the cable management. Begin at the clamp end and start placing the cabling in the tube (*Fig. 200*).
- 2. Follow the cable placement zipping the tube closed (Fig. 201).

Fig. 202 - Zip opposite end

Fig. 203 - Flexible routing

3. Once the cable is placed the entire length of tube, bring the zipper from the opposite end to meet at any point in the middle.

When necessary, the two zippers may be opened to allow any cables to be routed out of the tube.

5.11.2.3 Clamp Setup

In the event the tube becomes disconnected from the cable management clamp, follow these instructions to reattach the tube and clamp.

Loosen the clamp screw using the supplied 3 mm hex driver. Slide the clamp around the tube first and then slide the tube around the outside of the cable management mount (*Fig. 204*). Align the zipper opening and the cable management clamp opening.

Slide the clamp over the tube and cable management mount pinching the tube in between (*Fig. 205*).

Tighten the clamp screw (*Fig. 206*).

Fig. 204 - Slide tube around mount

Fig. 205 - Slide clamp onto mount

Fig. 206 - Tighten clamp screw

5.11.3. Preamp Bracket

Intended Use:

- The **SKOOT** preamp bracket is intended to mount objects (eg. preamps, splitters, etc) that:
- have a maximum weight of 1.36 kg (3 lb) ►
- are attached to the SKOOT with a lanyard or probe cables strong enough to prevent the object from falling
- have smooth edges so as not to cut preamp velcro strap

To install and use the preamp, follow these steps:

The preamp bracket mounts to any dovetail groove to hold a preamp. Compatible with most standard preamps, use the adjustable screw mounting channel on the bottom of the bracket to attach a preamp. The preamp bracket may also be ordered with Velcro straps which are used to hold the preamp.

Fig. 208 - Place preamp and wrap velcro

Fig. 209 - Mount bracket on a frame bar

6.1. System Startup

Fig. 210 - Power controller

To activate the system, follow these steps:

- **1.** Plug-in the power controller to the appropriate power source (see "Power Requirements" on page 10).
- 2. Connect the components (see "Configurations" on page 40)
- **3.** Locate the red emergency stop push-button (*Fig. 210-1*) on the power controller. Rotate this button clockwise to unlatch.
- 4. The green push-button (Fig. 210-2) on the power controller activates the system.

5. A warning message will display on the handheld controller when power has been activated (*Fig. 211*). Once the dangers of using the **SKOOT** are recognized and understood by reading this user manual, touch **Ok** to acknowledge the warning.

Fig. 212 - Falling object warning

6. A second warning message (*Fig. 212*) will display requesting assurance that a No Entry Fall Zone has been established (see "Preparation for Safe Use" on page 35) and tether requirements are met (see "Tether Requirements and Attachment" on page 36). Acknowledge this warning by touching **Yes**.

Once the system is initialized, the **Mode Select** screen will appear *(see "Mode Select Screen" on page 98)*. The system is now ready for operation.

6.2. Placement of Crawler on Inspection Surface

WARNING! FALLING OBJECT HAZARD. Read and understand the proper procedure for using the lostallation/Removal Mat. If grawler installation is

the Installation/Removal Mat. If crawler installation is done at elevated heights, improper use may cause the crawler to fall and **SEVERE INJURY** or **DEATH** could result.

CAUTION! Do **NOT** handle crawler using the umbilical cable. Use the provided handle.

CAUTION! To place the crawler on the inspection surface, use the scanner installation/ removal mat (*Fig. 56*) as a spacer between the wheels and the surface on which the crawler is to drive. This is necessary to protect the electronic components within the crawler from damaging shock, should the crawler be slammed directly onto the surface.

WARNING! MAGNETIC MATERIAL. The wheels of the crawler produce an extremely strong magnetic field which may cause failure or permanent

magnetic field which may cause failure or permanent damage to items such as watches, memory devices, CRT monitors, medical devices or other electronics.

Tools, magnets and metal objects can cut, pinch or entrap hands and fingers. **HANDLE WITH CARE**.

People with pacemakers or ICD's must stay at least 75 cm (30 in) away.

WARNING! MAGNETIC MATERIAL. The installation/removal mat contains magnetic material. Those with pacemakers or ICD's must stay at least 10 cm (4 in) away.

6.2.1. Scanner Installation/Removal Mat Use

To place the crawler on the inspection surface, follow these steps:

NOTE: For scanner installation/removal on inspection surfaces with a temperature between 50°C and 150°C (122°C and 302°C), use the medium temperature installation/removal mat found in the automated crawler medium temperature add-on kit. Also, ensure the medium temperature cable management is used in place of cable management (see "Cable Management" on page 89)

NOTE: The manufacturer recommends two persons install the crawler on an inspection surface. One person to lower the crawler to the scan surface and one person to operate the crawler via the handheld controller.

Fig. 213 - Front swivel adjustment levers

- 1. Once crawler preparation is complete (see "System components" on page 20) and system startup has been performed (see "System Startup" on page 92), raise the front swivel mounts to ensure they will not hinder the wheels from contacting the inspection surface (see "Crawler" on page 48). Release the front swivel adjustment levers (Fig. 213), located at the front of the crawler, to position the front swivel mount.
- 2. Set the crawler to Jog Mode (see "Jog Mode" on page 99).

- 3. Place the installation/removal mat (Fig. 14) on the inspection surface (Fig. 214).
- 4. Place and hold the crawler on the installation/removal mat (Fig. 215).

NOTE: Do **NOT** release crawler when placed on the installation/removal mat.

Fig. 216 - Drive the crawler

Fig. 217 - Drive crawler off the mat

5. Ensure all four wheels of the crawler are held firmly against the installation/ removal mat. While holding the crawler, use the Fwd/Rev joystick (*Fig. 216*) to carefully drive the crawler (*Fig. 217*) off the installation/removal mat and onto the inspection surface (*Fig. 218*).

Fig. 218 - Magnetized to surface

TIP: Avoid the crawler slamming to the inspection surface. This can occur when all four wheels are not in contact with the installation/removal mat while the crawler is driven onto the inspection surface.

6. Remove the installation/removal mat from the inspection surface.

TIP: Circumstance may arise when only one person is available for placement of the crawler on a inspection surface. With the system power off, it is possible to place the crawler on the inspection/removal mat and manually push the crawler off the mat and onto the inspection surface.

6.3. Operation

6.3.1.1 Touchscreen

The handheld controller touchscreen (*Fig. 219-5*) is the primary operator interface for the system. Buttons are indicated on-screen with a 3D border (*Fig. 220*).

Fig. 220 - Sample touchscreen buttons

6.3.1.2 Click Wheel

The click wheel *(Fig. 219-3)* provides a redundant system control that may be utilized in lieu of the touchscreen. A blinking box around a button indicates the click wheel selection. Rotating the click wheel selects different buttons on-screen. Press the click wheel to choose the button currently selected.

6.3.1.3 Joysticks

The joysticks are used to control the system. The left joystick (*Fig. 219-2*) controls the forward/reverse movement of the crawler. The right joystick (*Fig. 219-1*) controls raster arm movement.

6.3.2. Mode Select Screen

Fig. 221 - Mode select

The Mode Select screen offers four modes of operation for the system:

Jog Mode	(see "Jog Mode" on page 99)
Latched Jog Mode	(see "Latched Jog Mode" on page 101)
System Utilities	(see "System Utilities Screen" on page 102)

6.3.3. Jog Mode

Jog mode manually controls the system movement using the joysticks.

Fig. 222 - Jog mode

Jog mode manually controls the system movement using the joysticks.

0	Scan/Rapid Button (<i>Fig. 222</i>)	Used to quickly switch between crawler speeds. The speed in either mode can be manually set to the users preference.	
		TIP: Fine adjustments of speed can be made in the User Settings (see "User Settings Screen" on page 102).	
2	Zero Button <i>(Fig. 222)</i>	Sets the current position to zero for all modules.	
3	Module Position Button(s) <i>(Fig. 222)</i>	Displays the current position of the crawler. Press to set the position to any value using the Edit screen. When a module position is modified, the position will be modified for all other system modes.	
		NOTE: This function only zeroes the number displayed on the SKOOT handheld controller. It does not zero the position used in the data acquisition instrument.	
4	Module Rate Button(s) <i>(Fig. 222)</i>	Displays the current maximum rate for the selected speed mode. Press to set the maximum rate using the Edit screen. The movement commanded by the joysticks will be limited to the indicated rate. When a rate is modified, the rate will be modified for all other system modes.	
---	--	--	
5	Exit Button: (Fig. 222)	Exits the jog mode and returns to the Mode Select screen.	
6	BiasOn/BiasOff button (Fig. 222)	When the Steering Bias setting is non-zero, this button will be displayed to allow the set steering bias for the right steering joystick to be turned on and off.	

Fig. 223 - BiasOn/BiasOff button identification

Fig. 224 - Latched jog mode

Identical to standard jog mode, latched jog mode adds forward or reverse crawler movement at the selected scan rate. This eliminates the need to manually hold the left joystick (see "Jog Mode" on page 99).

7	FWD & REV Buttons:	The FWD and REV buttons are located in the crawler tab. Press the FWD or REV button to drive the crawler at the current maximum scan rate. Touching the handheld controller screen or pressing the click wheel stops crawler movement.
		NOTE: The FWD & REV Buttons will not be present in rapid mode.

Fig. 225 - Utilities screen

The **Utilities** screen provides access to the setup, diagnostics and user preference settings.

User Settings Button (Fig. 225)	Access the User Settings screen allowing for various user preferences to be adjusted.
Diagnostics Button (Fig. 225)	Enters the Diagnostic screens which may be used to monitor system components and function.
Touch Cal Button (Fig. 225)	Used to initiate the Touch Calibration screen.
Joystick Cal Button (Fig. 225)	Used to enter the Joystick Calibration screen.
Draw Button (Fig. 225)	Enters mode used to test the touch screen accuracy and response

6.3.5.1 User Settings Screen

User Settings	1
Units In=0/MM=1 Crawler Scan unit/s Crawler Rapid unit/s Raster Scan unit/s Raster Rapid unit/s	1 76 254 92 923
Edit Up Down	Exit

Fig. 226 - User settings screen

Allows user to customize the system to their preferences.

The blinking highlighted box indicates the current selection. Use the click

knob or **Up** and Down buttons to select different settings.

Press **Edit** to enter the **Edit** screen to apply changes to the selected setting.

The Exit button direct to the System Utilities screen.

TITLE	DESCRIPTION	VALID RANGE	DEFAULT
Units In=0/MM=1	Changes the measurement units for display and user entry. When set to 0, units measure in inches. When set to 1, units measure in millimeters.	0-1	1
Crawler Scan unit/s	Sets the crawler scan rate in the current units/second. This setting can also be changed through the Jog or Two Axis Scan Speed screens	5-142 mm/s (0.2-5.6 in/s)	43 mm/s (1.7 in/s)
Crawler Rapid unit/s	Sets the crawler rapid rate in the current units/second. This setting can also be changed through the Jog screen.	5-142 mm/s (0.2-5.6 in/s)	142 mm/s (5.6 in/s)
Raster Scan unit/s	Sets the raster arm scan rate in the current units/second. This setting can also be changed through the Jog or Two-Axis Scan Speed screens.	5-762 mm/s (0.2-30 in/s)	76 mm/s (3.0 in/s)
Raster Rapid unit/s	Sets the raster arm rapid rate in the current units/second. This setting can also be changed through the Jog screen.	5-762 mm/s (0.2-30 in/s)	762 mm/s (30.0 in/s)
*Raster Flip 0/1	Set raster arm orientation. When the raster arm is mounted with the motor housing to the left of the crawler, the appropriate setting is 1. When the raster arm is mounted with the motor housing to the right of the crawler, the appropriate setting is 0. When this setting is changed, the system must be rebooted.	0-1	1

6.3.5.2 Diagnostics Screens

Several diagnostic screens allow various system functions to be monitored. Navigate to different diagnostic screens using the **PREV** and **NEXT** buttons. The **Exit** button returns to the **System Utilities** screen.

NOTE: The diagnostic information requires an in depth understanding of the underlying technologies and programming in the system. Not all functions and information is explained in this manual.

6.3.5.2.1. Detected Modules

Fig. 227 - Detected modules screen

Screen indicates the system software version and displays which modules were detected when the system was activated.

6.3.5.2.2. System 1

Diagnostics	System 1
PowerOnTime:	55:48:42
Reset Cause:	0
ResetInt:	0
EEpromCheck:	0
Joysticks:	1 -6
Touchscreen:	2683 3486
PREV	Exit

Fig. 228 - Diagnostic screen

System 1 diagnostic screen displays general system function information.

PowerOnTime	The total accumulative time the handheld controller has been powered
Joysticks	Indicates the raw position reading from the joysticks
TouchScreen	Indicates the raw position reading from the last touchscreen contact

Diagnostics	System 2
Free Timer:	5568
Heart Timer:	595
Scrollwheel:	0
Scrollbutton:	0
Port B: 101000	0000000000
Port D: 110011	0000011110
PREV	Exit

Fig. 229 - Diagnostic screen

Additional general system function information is displayed within the **System 2** screen. An empty button is provided to allow testing of the click wheel.

Free Timer	Value from a free running system timer. If this timer is static, an internal controller issue is present
Scrollwheel	Counter indicating the rotary position of the click wheel.
Scrollbutton	Indicates the status of pressing the click wheel

6.3.5.2.4. System 3

Diagnostics	System 3
IntAddr:	0000
IFS0:0100100	
IPC0: 1000000	5444 6444
Timer:	2837
PREV NEXT	Exit

Fig. 230 - Diagnostic screen

The **System 3 Diagnostic** screen displays additional system information. The information provided does not typically assist the user.

Diagnostics	Skoot-L
Status Reg:	01002690
Net Status:	05000000
Last Error:	00118130
Status Word:	1217
Current mA:	0
Temperature:	25
PREV NEXT	Exit

Fig. 231 - Diagnostic screen

The Skoot-L diagnostic screen provides information regarding the status of the crawler. A separate screen is available for each module detected upon system startup.

Current MA	Displays the output of the crawler to the motor. The current (mA) displayed is directly proportional to the motor's output torque. This reading can be used to check if the control system is responding to forces on the modules motor
Temperature	Internal temperature reading of the crawler in degrees Celsius

Diagnostics	Skoot-L
AuxEncPos:	1
EncPos:	15
Stator:	255
Commutation:	45
Motor Stat:	00000000
Dis Ena Step	
PREV NEXT	Exit

Fig. 232 - Diagnostic screen

AuxEncPos	Displays the position of the auxiliary encoder in counts when connected to the module. When the auxiliary encoder is moved, this number will change. When the encoder is moved from its current position and then back to that exact same position, this number will also return to its original position
EncPos	The position of the modules motor encoder in counts

6.3.5.3 Touch Calibration Screen

Fig. 233 - Touch calibration screen

This option allows calibration of the touch screen. Typically, this should not be necessary.

Touch the screen as the markers appear in the four corners of the screen.

TIP: It is recommended that the markers be touched with a small object to enhance the touch position accuracy during calibration.

The new calibration is stored immediately when the fourth marker is pressed. The calibration utility exits and return to the **System Utilities** screen. To abort the calibration, the system power may be turned off before the last marker is pressed.

Fig. 234 - Joystick error

Typically joystick calibration is only necessary when a joystick off center error is detected upon startup *(Fig. 234)*. Calibration may also be used when a joystick function does not appear to be properly centred.

Joystick	Ca	libration
Left: Right:	1 -5	Calibrate Calibrate
		Exit

Fig. 235 - Joystick calibration screen

Current readings of the joysticks are displayed in the **Joystick Calibration** screen (*Fig. 235*). When the numbers are not near zero, press the **Calibrate** button to recalibrate to 0. The new calibration is stored when the **Exit** button is pressed.

Fig. 236 - Draw utility

The draw utility may be used to test the function of the touchscreen. Exit the utility by pressing the click wheel.

6.3.6. High Internal Temperature Screen

CAUTION! HOT SURFACE. The handles of the crawler and crawler body may be hot to the touch. Use appropriate protective equipment when removing a crawler from a high temperature surface.

HIGH INTERNAL TEMPERATURE
Please remove system from hot environment or allow to cool.
Ok

Fig. 237 - High internal temperature screen

When the system approaches its maximum operating temperature, the high internal temperature screen will display. When this alert screen is displayed, all motor and system function will cease.

Press **OK** to reactivate the system to remove **SKOOT** from the scan surface.

MAINTENANCE

7.1. Safety Precautions Before Maintenance

WARNING! ELECTRICAL SHOCK

HAZARD. Disconnect the power controller when servicing the equipment. The power controller is powered even when the E-Stop push-button is latched in the off position.

WARNING! MAGNETIC MATERIAL. The wheels of the crawler produce an extremely strong

magnetic field which may cause failure or permanent damage to items such as watches, memory devices, CRT monitors, medical devices or other electronics.

Tools, magnets and metal objects can cut, pinch or entrap hands and fingers. **HANDLE WITH CARE**.

Those with pacemakers or ICD's must stay at least 25 cm (10 in) away at all times.

7.2. Cleaning

General cleaning of all components is important to keep the system working properly. All components that do not have wiring or cables are completely waterproof. Components can be washed with warm water, dish soap and a medium bristle brush.

Before using the scanner ensure that all connectors are free of water and moisture.

TIP: All components with wiring, cables or electrical connections are splash proof but not submersible.

NOTE: Never use strong solvents or abrasive materials to clean your scanner components.

7.3. Maintenance Schedule

The **SKOOT** system must be maintained according to the following schedule.

Task	Frequency			
Inspect safety apparatus				
This includes:				
• All components of tether system. Replace damaged components as necessary.	Every Use			
• Lifting sling on crawler. If the lifting sling shows signs of damage (e.g. cuts, abrasion, etc) do NOT use.				
Clean the drive wheels				
Debris will collect on the magnetic wheels. Remove this debris before every use. An effective cleaning method uses adhesive-backed tape <i>(e.g. duct tape)</i> to 'pull' the debris off the wheels.	Every Use			
Inspect cables and connectors				
Inspect the umbilical cable, the control cable and the power controller cable for damage. Have any damaged cable repaired by a qualified person or replace the cable assembly as necessary.	Every Use			
Inspect all connectors for damage or moisture. Straighten bent pins. Dry connectors before using.				
General cleaning				
Ensure that the scanner stays relatively clean by wiping off any excess dirt or other contaminants after every use.	Every Use			

TROUBLESHOOTING

8.1. Startup Issues

Two messages are possible in the event of a startup issue: **Joystick Off Center** or **Checking Network**.

8.1.1. Joystick Off Center

Fig. 238 - Joystick off centre screen

Upon system startup, the joystick positions are detected. When a joystick is detected outside the centre position, the **Joystick Off Center** screen displays indicating the joystick will be disabled. Press **Ok** to continue system startup. All system functions will work normally with the exception of movements that require joystick operation.

Ensure the handheld controller's joysticks are free of interference and reset the system power to enable joystick control.

If no interference of the joystick is present, the joystick calibration may need to be performed (see "Joystick Calibration Screen" on page 109)

8.1.2. Checking Network

Fig. 239 - Checking network screen

During startup, the system initializes the communications to all the devices on the network. If the network communication fails for any reason, the **Checking Network** message will appear and remain on screen.

Likely causes of this failure:

- 1. No devices connected to the network.
- 2. A problem with one of the devices.
- 3. Cable issue causing the entire network to fail.

Check the connections of the devices or try removing one device at a time from the system to isolate the problem device.

NOTE: Always turn off the system power before connecting or disconnecting any devices.

8.2. Startup Override

A system maintenance mode may be accessed to correct system issues. Enter the maintenance mode by pressing the handheld controller click wheel while system power is activated. Continue pressing the handheld controller click wheel until the **Startup Override** screen appears.

Fig. 240 - Startup override screen

8.2.1. Scan Devices

This utility scans the system network for devices. All possible device addresses and speeds are scanned. As devices are found, the address of the device and speed are displayed. When the scanning is complete, power to the system must be cycled.

Please Cycle Power
10-2, 20-2, Searching System 127 5

Fig. 241 - Cycle power screen

When a device is connected to the system but is not detected, this most likely indicates an internal device problem.

Normal network speeds will be **2** for all devices. When a device is not operating at the correct speed the internal software attempts to correct the device speed.

When a device is not operating at the correct speed, it may disrupt communications of the system network. Power should be cycled and the scan restarted.

TIP: Within normal operation, issues with device speed will be very rare. Device network speeds are set by the manufacturer and should not deviate.

8.2.2. Reset Parameters

If the system parameters become corrupt or a change is made that prevents the system from functioning properly. All system parameters may be restored to their factory settings by selecting this option. When pressing the **Reset Params** button, the changes occur immediately. Power will need to be cycled for the reset to be complete.

Fig. 242 - Cycle power screen

8.2.3. System Parameters

System parameters are factory set to control a variety of functions. These parameters can not be modified. However, special circumstances may occur when modification of these parameters could be recommended by the manufacturer.

Instructions for making changes to the system parameters will only be provided when deemed necessary by the manufacturer.

8.2.4. Device Address

Instructions for making changes to the system parameters will only be provided when deemed necessary by the manufacturer.

8.3. Additional Issues

Problem	Possible Cause	Solution	
Handheld controller display does not activate	Input power requirements not met.	Ensure input power meets requirements. (see "Power Requirements" on page 10)	
	Handheld controller not plugged into power controller.	Plug handheld controller into power controller. Ensure connectors are dry, clean and connector pins are not bent.	
	Umbilical cable not properly connected.	Check umbilical cable connections at both ends. Ensure connectors are dry, clean and connector pins are not bent.	
	SKOOT system not started.	Start the SKOOT system. (see "System Startup" on page 92)	
	Damaged components in controller, crawler, power controller or cabling.	Contact manufacturer. (see "Jireh Industries Ltd." on page 3)	
Handheld controller display is activated, yet crawler does not drive	Handheld controller is not in correct mode for driving.	(see Operation on page 97 for additional details).	
	Damaged components in handheld controller, crawler, power controller or cabling.	Contact manufacturer. (see "Jireh Industries Ltd." on page 3)	
Crawler does not drive and is unreachable	See possible causes for problem one of this list.	See solutions for problem one. If the crawler is still unresponsive (see "Retrieval of a Stranded Crawler" on page 118)	

For technical assistance (see "Technical Support" on page 119)

8.4. Retrieval of a Stranded Crawler

Should the **SKOOT** crawler become inoperative while out of reach, attempt first, the solutions offered in this manual (see *"Troubleshooting" on page 113*)

If troubleshooting does not rectify the issue, it may be necessary to retrieve the crawler manually. To do so:

1. Press the E-Stop push-button turning crawler power off.

NOTE: Under normal conditions, the crawler should begin descending slowly.

2. If the crawler stops descending due to some kind of impediment, use a ladder, man lift or scaffolding to assist the crawler in overcoming the obstacle.

NOTE: FALLING OBJECT HAZARD. It is **CRUCIAL** that the tether system remains active while retrieving the crawler (i.e. a mechanism or person must be continuously taking up slack in the tether).

SERVICE AND REPAIR

WARNING! ELECTRICAL SHOCK

HAZARD. Disconnect the power controller when servicing the equipment. The power controller is powered even when the E-Stop push-button is latched in the off position.

WARNING! MAGNETIC MATERIAL. The wheels of the crawler produce an extremely strong magnetic field which may cause failure or permanent damage to items such as watches, memory devices, CRT monitors, medical devices or other electronics.

Tools, magnets and metal objects can cut, pinch or entrap hands and fingers. **HANDLE WITH CARE**.

Those with pacemakers or ICD's must stay at least 25 cm (10 in) away at all times.

WARNING! DO NOT DISASSEMBLE. No user-serviceable parts. Disassembling any of the components in this product, beyond the instructions in this user manual, could void the regulatory

certifications and/or effect the safety of the product.

9.1. Technical Support

For technical support contact Jireh Industries (see "Jireh Industries Ltd." on page 3).

SPARE PARTS

To order accessories or replacement parts for your **SKOOT** system. *(contact Jireh Industries Ltd. on page 3)*

NOTE: These drawings are for parts order. This is not a list of kit contents.

10.1. SKOOT Crawler

Fig. 243 - SK00T base crawler spare parts

EA243	Sling
See Cable Management Sleeving	
UMA017-06	Auxiliary Cable
CES066	Cable Management Clamp
DNS006	Manipulation Handle
DNA008	SKOOT Case
CXS073	Cable Management Mount
AAS061	Installation/Removal Mat
DNA006-X	SKOOT Power Controller (See Power Cord Type)
EA414	3 mm (0.118 in) Hex Driver
EA480	3 mm (0.118 in) Flat Driver
EA470	10 mm (3/8 in) Wrench
CMG009-X	Irrigation Kit, 2-4 Probe, Large Tube (Various lengths available)
CXA008	Handheld Controller
UMA025-X-05	J300 Encoder Cable (see Encoder Connector Type)
	EA243 See Cable Manages UMA017-06 CES066 DNS006 DNA008 CXS073 AAS061 DNA006-X EA414 EA480 EA470 CMG009-X CXA008 UMA025-X-05

Fig. 244 - Kit components spare parts

10.2.1. Encoder Connector Type

Connector Type	Company/Instrument	Connector Type	Company/Instrument
В	Olympus - OmniScan MX / Zetec - ZIRCON, TOPAZ	G	Sonotron - Isonic
С	Olympus - Focus LT / Zetec Z-Scan / Eddyfi Ectane 2	М	GE - USM Vision
D	Olympus - OmniScan MX2, OmniScan SX	U	Sonatest - VEO, PRISMA
F	TD - Focus Scan, Handy Scan, Pocket Scan	V	Pragma PAUT 16/128, PragmaLite / Pragma UT400

Fig. 245 - Encoder connector type

NOTE: Additional encoder connector types available. (contact Jireh Industries Ltd. on page 3)

10.2.2. Power Cord Type

Fig. 246 - Encoder connector type

10.3. Probe Holder Frame

BOM ID	Part #	Description
1	CXS043	Vertical Probe Holder Side Arm, Left
2	CX0125	Knob, M4 x 16 mm
3	CX0126	Knurled Knob, M4 x 0.7 x 11.5 mm, 3 mm hex, 4 mm stand off, SST
4	CXS072-L	Arm Mount Block, Left
5	BG0038-X	Frame Bar (see Frame Bar)
6	CXS072-R	Arm Mount Block, Right
7	CXS042	Vertical Probe Holder Side Arm, Right

Fig. 247 - Probe holder frame parts

10.4. Low Profile Probe Holder Frame

l off, SST

Fig. 248 - Low profile probe holder frame parts

10.5. Pivoting Probe Holder Frame

CXS072-R Arm Mount Block, Right

9

10

CXS042 Vertical Probe Holder Side Arm, Right

Fig. 249 - Pivoting probe holder parts

10.6. Slip Joint Probe Holder Parts

BOM ID	Part #	Description
1	PH0104	Knurled Knob, M4 x 0.7 x 18 mm, 4 mm stand off, SST
2	PH0082	Knurled Knob, M4 x 0.7 x 10 mm, 3 mm stand off, SST
3	PHS022	Slip Joint Probe Holder Subassembly
4	see Swing Arm Style	
5	MD050-010	SHCS, M4 x 0.7 x 10 mm, SST
6	see Yoke Style	
7	see Arm Style	
8	PH0011-X	Pivot Button Style (see Pivot Button Style)

Fig. 250 - Slip joint probe holder parts

10.7. Vertical Probe Holder Parts

BOM ID	Part #	Description
1	PHS028	Vertical Probe Holder Subassembly
2	PH0082	Knurled Knob, M4 x 0.7 x 10 mm, 3 mm stand off, SST
3	MD050-010	SHCS, M4 x 0.7 x 10 mm, SST
4	see Yoke Styl	e
5	see Arm Style)
6	PH0011-X	Pivot Button Style (see Pivot Button Style)

Fig. 251 - Vertical probe holder parts

10.8. Heavy Duty Vertical Probe Holder

BOM ID	Part #	Description
1	MD074-020	BHCS, M5 x 0.8 x 20 mm, SST
2	PHS049	Heavy Duty Probe Holder Subassembly
3	EA154	Probe Holder Arm Adjustment Knob
4	See Heavy Duty	Yoke Style
5	PH0165	Heavy Duty Probe Holder Arm, Standard, Drop
6	PH0011-X	Pivot Button Style (See Pivot Button Style)

Fig. 252 - Heavy duty vertical probe holder parts

10.9. Corrosion Thickness Probe Holder

Fig. 253 - Corrosion thickness probe holder parts

10.10. Probe Holder Components

	10.1	D.1.	Arm Sty	yle						
		Arm St	yle	Part #			Arm Sty	le	Part #	
A	s	tandard,	Flat	PH0090	60	В	Short, Fl	at	PH0089	
С	;	Long, F	lat	PH0099	00	D	Standard, I	Drop	PH0093	
E		Short, D	rop	PH0092		F	Long, Dro	ор	PH0094	
G	;	Standa Extra-D	rd, rop	PH0096		н	Short, Extra-	-Drop	PH0095	
I	Ex	tra-Shor	t, Flat	PH0159		J	Extra-Short,	Drop	PH0161	
					Fig. 254 - Probe ho	older ar	m selection			
	10.1	0.2.	Yoke St	yle						
	Yok	e Style	Part #	Length			Yoke Style	Part #	Length	
S	Sta	ndard	PHS052	6.3 cm (2.47 in)		W	Wide	PHS063	7.9 cm (3.06 in)	
					Fig. 255 - Probe ho	older yo	ke selection			
	10.1	0.3.	Swing A	Arm Style						
Sw	ing Ar	m Styl	e Part #	Length		Swir	ng Arm Style	e Part #	# Length	
	Sho	ort	PH0069	4.1 cm (1.61 in			Long	PH010	0 4.6 cm (1.81 ir	
	Fig. 256 - Swing arm selection									
	10.1	0.4.	Heavy I	Outy Yoke	Style					
	Yoke	e Style	Part #	Length			Yoke Style	Part #	Length	
S	Sta	ndard	PHS048	8.3 cm (3.26 in)		W	Wide	PHS047	12.2 cm <i>(4.79 in)</i>	
				Fi	ig. 257 - Heavy duty pro	obe holo	ler yoke selecti	on		
	10.1	0.5.	Pivot B	utton Style	9					
	Piv	ot Hole	Size W	edge Type			Pivot Hole	Size W	/edge Type	
01	8.	0 mm <i>(0</i> .3	32 in) C	lympus PA	S)	02	5.0 mm <i>(0.20</i>) in) Ol	ympus TOFD	S)
03	2	.7 mm <i>(0.</i>	11 in) Sona	itest DAAH PA	S.	04	9.5 mm <i>(0.38</i>	3 in)	-	
06	3	.0 mm <i>(0</i> .	12 in)	-	S)	07	2.3 mm (0.09) in)	-	5
08	6	Conical F	lead	-	SP	09	5 mm <i>(0.20 in)</i> Ir	nternal Ze	tec PA/TOFD	SP
					Fig. 258 - Pivot	button s	selection			_
	NOTE: Additional probe holder pivot button types available. (see "Jireh Industries Ltd." on page 3)									

Part #	Wear Plate	Receptacle	Part #	Wear Plate	Receptacle	
PHS066-A	Curved	9.53 mm (0.375 in) dia.	PHS066-B	Curved	12.7 mm (0.5 in) dia.	
PHS066-C	Curved	19 mm (0.75 in) dia.	PHS066-E	Curved	25.4 mm (1 in)	
PHS067-A	Flat	9.53 mm (0.375 in) dia	PHS067-B	Flat	12.7 mm (0.5 in) dia.	
PHS067-C	Flat	19 mm (0.75 in) dia.	PHS067-D	Flat	Technisonic	
PHS067-E	Flat	25.4 mm (1 in)				

10.10.6. Probe Holder Receptacle and Wear Plate

Fig. 259 - Pivot button selection

10.11. Variable Components

10.11.1. Frame Bar

Part #	Length	Part #	Length	
BG0038-05	5 cm <i>(1.97 in)</i>	BG0038-10	10 cm <i>(3.94 in)</i>	
BG0038-15	15 cm <i>(5.91 in)</i>	BG0038-20	20 cm (7.87 in)	
BG0038-25	25 cm (9.84 in)	BG0038-30	30 cm <i>(11.81 in)</i>	
BG0038-35	35 cm <i>(13.78 in)</i>	BG0038-40	40 cm <i>(15.75 in)</i>	
BG0038-45	45 cm (17.72 in)	BG0038-50	50 cm (19.69 in)	
BG0038-55	55 cm (21.65 in)			

Fig. 260 - Frame bar selection

10.11.2. Cable Management Sleeving

Part #	Length	
CX0141	4.5 m <i>(14.8 ft)</i>	
CX0145	9.5 m <i>(31.2 ft)</i>	
CX0146	14.5 m <i>(47.6 ft)</i>	
CX0147	29.5 m <i>(96.8 ft)</i>	

10.12. Accessories

10.12.1. Automated Crawler Medium Temperature Add-On Kit

BOM ID	Part #	Description
1	CXG031-04.5	Automated Crawler Medium Temperature Add-On Kit
2	CXS102	Medium Temperature Installation/Removal Mat
3	CX0371-04.5	Medium Temperature Sleeving
4	CXS114	Medium Temperature Clamp
5	CXS112	Medium Temperature Mount

Fig. 262 - Automated Crawler Medium Temperature Add-On Kit

10.12.2. Preamp Bracket

10.12.3. Battery Powered Optical Guide

Fig. 264 - Battery powered optical guide

	Fail#	Description
1	DNA010	SKOOT Crawler Case
2	CXA023	Umbilical / Probe Holder Frame Case
3	CMA016	Motorized Pump / Umbilical Case
4	EA421	Umbilical Case

Fig. 265 - Cases

DISPOSAL

WEEE Directive

In accordance with European Directive on Waste Electrical and Electronic Equipment (WEEE), this symbol indicated that the product must not be disposed of as unsorted municipal waste, but should be collected separately. Refer to Jireh Industries for return and/or collection systems available in your country.

LIMITED WARRANTY

WARRANTY COVERAGE

Jireh Industries warranty obligations are limited to the terms set forth below: Jireh Industries Ltd. ("Jireh") warrants this hardware product against defects in materials and workmanship for a period of THREE (3) YEARS from the original date of purchase. If a defect exists, at its option Jireh will (1) repair the product at no charge, using new or refurbished replacement parts, (2) exchange the product with a product that is new or which has been manufactured from new or serviceable used parts and is at least functionally equivalent to the original product, or (3) refund the purchase price of the product or ninety (90) days from the date of replacement or repair, whichever provides longer coverage for you. When a product or part is exchanged, any replacement item becomes your property and the replaced item becomes Jireh's property. When a refund is given, your product becomes Jireh's property.

OBTAINING WARRANTY SERVICE

To utilize Jireh's warranty service you must ship the product, at your expense, to and from Jireh Industries. Before you deliver your product for warranty service you must phone Jireh and obtain an RMA number. This number will be used to process and track your product. Jireh is not responsible for any damage incurred during transit.

EXCLUSIONS AND LIMITATIONS

This Limited Warranty applies only to hardware products manufactured by or for Jireh Industries. This warranty does not apply: (a) to damage caused by accident, abuse, misuse, misapplication, or non-Jireh products; (b) to damage caused by service (including upgrades and expansions) performed by anyone who is not a Jireh Authorized Service Provider; (c) to a product or a part that has been modified without the written permission of Jireh.

Jireh Industries Ltd.

53158 Range Road 224 Ardrossan AB T8E 2K4 Canada Phone: 780-922-4534 jireh.com

HydroFORM™ is a trademark of Olympus

All brands are trademarks or registered trademarks of their respective owners and third party entities.

Changes or modifications to this unit or accessories, not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

All specifications are subject to change without notice.

© 2015 - 2020 Jireh Industries Ltd.

JIREH

Jireh Industries Ltd. 53158 Range Road 224 Ardrossan, Alberta Canada T8E 2K4

63

780-922-4534 jireh.com

XÔ